

www.usn.no

Faculty of Technology, Natural Sciences and Maritime Sciences
Campus Porsgrunn

PRH612-1 19V Bachelor’s thesis

Project and inventory manager - creating
an extensible application in C++ and a

future-oriented database with
PostgreSQL

Production

Sales

Quality Assurance

Shipping

After market service

Inventory management
system

Manufacturing history
database

Which customer is
this project for?

Which project
should this
component be
used in?

Is this component
calibrated?

When was these
products shipped?

Are there any
replacement
sensors in stock?

Traceability

IA6-10-19

www.usn.no

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this student report.

Course: SCE4006 Project, 2019/PRH612-1 19V Bachelor’s thesis

Title: Project and inventory manager – creating an extensible application in C++ and a future

oriented database with PostgreSQL.

This report forms part of the basis for assessing the student’s performance in the course.

Project group: IA6-10-19 Availability: Open

Group participants: Martin Holm

Espen Buø

Sindre Eiken

Supervisor: Hans-Petter Halvorsen

Project partner: Scanjet Ariston AS

Approved for archiving: __

Summary:

Scanjet Ariston AS is a company that delivers and develops a universal and flexible solution for
tank monitoring and control. To ensure traceability of their products, a database is used to store
information about each product. Today Scanjet Ariston AS uses a database based on Clarion, a file-
based proprietary solution. The company evaluates Clarion to have an uncertain future and
concludes that it is a considerable risk to continue using the current system. Scanjet wants to
develop a new solution which is extensible, future-oriented and created in a well-known
development environment.

The main objectives in this project consists of creating a new database, an associated application
and migration of all existing data to the new solution. Additional tasks include creating a user
manual for the application and test documentation.

This project has chosen an agile development methodology called Scrum as a guiding principle
during the development process.

A new database is developed and documented during the project. Using Devart for Excel and
Python, methods for migrating the existing data to the new database has been developed. A guide
has been written to assist Scanjet Ariston AS with the migration after this project.

A desktop application prototype is developed for accessing this database. This application remains
unfinished but consists of three semi-independent software layers that can be developed further or
reused in a different setting. The application incorporates flexible solutions such as a general SQL
interface for PostgreSQL, and a platform independent configuration layer.

www.usn.no

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this student report.

Emne: SCE4006 Project, 2019/PRH612-1 19V Bacheloroppgave

Tittel: Project and inventory manager – creating an extensible application in C++ and a

future oriented database with PostgreSQL.

Denne rapporten utgjør en del av vurderingsgrunnlaget i emnet.

Prosjektgruppe: IA6-10-19 Tilgjengelighet: Åpen

Gruppedeltakere: Martin Holm

Espen Buø

Sindre Eiken

Veileder: Hans-Petter Halvorsen

Prosjektpartner: Scanjet Ariston AS

Godkjent for arkivering: __

Sammendrag:

Scanjet Ariston AS er et firma som leverer og utvikler en universell og fleksibel løsning for
overvåkning og styring av tanker om bord på skip. For å sikre sporbarhet for produktene deres,
brukes det en database til å lagre informasjon om hvert produkt. I dag bruker Scanjet Ariston
AS en database basert på Clarion, som er en filbasert proprietær løsning. Scanjet vurderer
Clarion til å ha en usikker fremtid, og konkluderer dermed at det er en risiko å fortsette med
løsningen de har i dag. Firmaet vil derfor utvikle en ny løsning som er fleksibel, fremtidsrettet
og utviklet i et kjent rammeverk.

Oppgaven går ut på å lage en ny database, en tilhørende applikasjon og migrering av
eksiterende data fra det gamle til det nye systemet. I tillegg skal det utarbeides en
brukermanual og testdokumentasjon.

Under dette prosjektet er det valgt å bruke en fleksibel utviklingsmetode kalt Scrum som et
ledende prinsipp gjennom utviklingsprosessen.

En ny database er utviklet og dokumentert under prosjektet. Ved hjelp av Devart for Excel og
Python er metoder for migrering av eksisterende data utarbeidet. En veiledning er skrevet for å
hjelpe Scanjet Ariston AS med migreringen etter dette prosjektet.

En prototype av applikasjonen er utviklet for databasen. Applikasjonen er utferdig, men består
av tre delvis uavhengige programvarelag som kan utvikles videre eller gjenbrukes i andre
omstendigheter. Programmet inneholder fleksible løsninger som et generelt SQL-grensesnitt
for PostgreSQL, og en plattformuavhengig konfigurasjon.

 Preface

4

Preface
This bachelor thesis is written by three students at the University of South-Eastern Norway,
attending the educational program for information and automation technology in the 6.
Semester. The report is a result of a project done as a bachelor thesis in cooperation with
Scanjet Ariston AS. At the end of the project, all contents of this report and developed
software will be handed over to the project partners. The faculty will receive this report and
all appendixes which are not confidential.

The picture used on the front page is made by the group using MS Visio.

The tools used during the project includes the following: MS Word, MS Excel, MS Visio,
MS Visual Studio, MS Visual Studio Code, Toad Data Modeler, PGadmin, RAD Studio,
InnoSetup, JetBrains PyCharm Community Edition, pyinstaller, draw.io, Oracle VirtualBox,
SoftVelocity Database Scanner, Maple and Windows 10.

All program code is stored on a memory stick which is delivered to Scanjet Ariston AS.

To understand the full context of this thesis, basic knowledge about programming of
applications and databases is an advantage.

The bachelor group would like to express their gratitude and thank the project partners for their
guidance and cooperation during the project, especially Kai Ebersten (Scanjet Ariston AS) and
Erik Syvertsen (Scanjet Ariston AS).

Porsgrunn, 14.05.19

 Nomenclature

5

Nomenclature
Attribute - A database field containing a value of a column. (Database)

Attribute - A key-value pair written within an element tag. (XML)

CMD - Windows command shell

Cursor - SQL object that describes the values of an entry in a database

CSV file - Text file with comma-separated values

DOM - Document Object Model.

Entity - A table in a database.

ER - Entity Relation.

GUI - Graphical User Interface.

IDE - Integrated Development Environment.

PO - Purchase Order.

PgDAC - PostgreSQL Data Access Components, plugin for Rad Studio.

VCL - Visual Component Library

XML - Extensible Markup Language, with the associated file extension .xml.

 Contents

6

Contents

1 .. Introduction ... 8

1.1 Background and problem description .. 8
1.2 Project objectives ... 8
1.3 Methods ... 9
1.4 Scope ... 9
1.5 Report structure .. 10

2 .. Existing and planned solution ... 11

2.1 Existing solution ... 11
2.1.1 Existing database .. 11
2.1.2 Existing application .. 14

2.2 Planned solution ... 17
2.2.1 Planned database .. 17
2.2.2 Planned application .. 18

3 .. Database – Requirements and design .. 19

3.1 Requirements .. 19
3.1.1 Database requirements .. 19
3.1.2 User access requirements ... 19

3.2 Entity-relationship model ... 20
3.2.1 Relationship between main tables .. 20
3.2.2 Project and tank tables ... 22
3.2.3 Component and tank tables ... 23
3.2.4 Company and contact person tables .. 24
3.2.5 Article, company and attachment tables .. 25
3.2.6 Article and sensor specification tables .. 27
3.2.7 Detail and detail type tables ... 28

4 .. Migration of data – Requirements and design ... 30

4.1 Requirements and restrictions .. 30
4.2 Migration issues .. 31

4.2.1 Clarion, and differences from Excel .. 31
4.2.2 Project related data ... 32
4.2.3 Component data .. 33
4.2.4 Tank data .. 34
4.2.5 Attachment data .. 35

4.3 Choice of tools .. 35
4.3.1 Export formats ... 35
4.3.2 Required functionality .. 35
4.3.3 PgAdmin with PostgreSQL .. 36
4.3.4 Devart and Excel ... 36
4.3.5 Rad Studio with C++ or PyCharm with Python .. 36
4.3.6 Picking tools .. 36

4.4 Design .. 36
4.4.1 Project and purchase order migration .. 36
4.4.2 Finding project IDs .. 37
4.4.3 Component migration ... 38
4.4.4 Python script ... 41
4.4.5 Check match .. 41
4.4.6 Tank and sensor data migration .. 42

 Contents

7

4.4.7 Attachment ... 46

5 .. Application – Requirements and design ... 47

5.1 Requirements .. 47
5.1.1 Adding data – New records .. 47
5.1.2 Modify data – Update existing records ... 47
5.1.3 Grid view – Browse data ... 47
5.1.4 Configuration files and programming of sensors ... 48
5.1.5 Log in function .. 48
5.1.6 Print reports ... 48

5.2 Graphical user interface ... 48
5.2.1 Start page ... 48
5.2.2 Menu ... 49
5.2.3 Panels ... 50
5.2.4 Grid view .. 51
5.2.5 New record / Edit record ... 52

5.3 Code structure .. 54
5.3.1 Overview .. 54
5.3.2 VCL controls and derived classes (s_gui) .. 55
5.3.3 Main form (mainsource) ... 60

5.4 XML configuration file .. 62
5.4.1 Data sources .. 62
5.4.2 Choosing the right technology .. 63
5.4.3 Document structure .. 63
5.4.4 XML parser ... 65
5.4.5 Instantiated data structure (s_datastructure) .. 67

5.5 SQL interface ... 69
5.5.1 Interface foundations .. 69
5.5.2 PgDac intro .. 69
5.5.3 Usage/high level logic .. 69
5.5.4 Underlying algorithms .. 73

6 .. Status of prototypes and solutions ... 77

6.1 Database .. 77
6.2 Migration – Solutions ... 77

6.2.1 SoftVelocity Database Scanner ... 78
6.2.2 New data ... 78
6.2.3 Python transformation .. 79
6.2.4 Excel ... 80
6.2.5 Formatting .. 82

6.3 Application status ... 82
6.3.1 Configuration layer ... 82
6.3.2 SQL interface ... 83
6.3.3 GUI classes .. 83
6.3.4 Main source ... 84
6.3.5 General issues ... 84

6.4 Deployment ... 84

7 .. Discussion ... 87

7.1 The database ... 87
7.2 Migration .. 88
7.3 Application .. 88
7.4 Further development .. 90

8 .. Summary .. 91

 1 Introduction

8

1 Introduction

1.1 Background and problem description
Scanjet Ariston AS is a company that delivers and develops a universal and flexible solution
for tank monitoring and control. To ensure traceability of their products, a database is used to
store information about each product. Today Scanjet Ariston AS uses a database based on
Clarion, which is a file-based proprietary solution. Clarion is a programming language
developed by SoftVelocity and is a business-oriented software, which means its focused less
on the technology and more on the business of software. [1]

Scanjet Ariston AS evaluates Clarion to have an uncertain future and concludes that it is a
considerable risk to continue using the existing solution. Additionally, expanding the current
solution can be complicated due to Scanjet Ariston’s lack of experience and knowledge about
Clarion as a programming language. As Scanjet Ariston AS has departments localized in
several countries such as China, Korea, Indonesia, Norway and Sweden there is now also a
need for a client/server-based solution. The company wants to develop a new solution which
is extensible, future-oriented and created in a well-known development environment.

1.2 Project objectives
The main objectives in this project consists of developing a new database with an associated
desktop application, as well as migration of data from the existing system. The intermediate
objectives include creating requirements based on the existing system and customer needs, a
user manual for the application and test documentation. Additional tasks consist of creating a
web application, implement functions to program Scanjet Ariston’s components and
generation of configuration files for the customers products. Figure 1-1 illustrates an
overview of which tasks the new system should perform.

 1 Introduction

9

Production

Sales

Quality Assurance

Shipping

After market service

Inventory management
system

Manufacturing history
database

Which customer is
this project for?

Which project
should this
component be
used in?

Is this component
calibrated?

When was these
products shipped?

Are there any
replacement
sensors in stock?

Traceability

Figure 1-1: System overview

1.3 Methods
This project has chosen Scrum as a guiding principle rather than methodology as
recommended by the project supervisor. Scrum is an agile methodology, meaning it prefers
face-to-face communication and improving on working software, among other things. This
project’s take on Scrum includes a total of three release iterations with similar time
constraints, weekly meetings with customer and project supervisor, and the use of living
documentation. Most importantly are workloads broken down into tasks of no more than a
few hours. [2]

1.4 Scope
As the task described and discussed with Scanjet Ariston is large, constraints are needed. The
task is limited to include development of a new database, an associated application and
migration of data from the existing system. The task includes development of user
authentication control, a user manual and test documentation. Creating a web application,
programming of components and Scanjet’s configuration file generation are excluded from the
project scope.

 1 Introduction

10

1.5 Report structure
The introduction chapter gives information about the background of the customer Scanjet, and
the bachelor group. It then describes the project objectives, work methodology and the scope
of the project.

Chapter two describes the existing system and the planned solution.

Chapter three describes the requirements and design for the new database.

Chapter four describes the requirements for migrating data and the designed solution.

Chapter five describes the requirements and design for the new application.

Chapter six describes the status of prototypes and solutions for the new system.

Chapter seven is a discussion regarding problems, methods and solutions in the project.

Chapter eight is a summary of the project.

 2 Existing and planned solution

11

2 Existing and planned solution
Today, Scanjet Ariston AS uses a software based on Clarion to store information about
projects and products. However, there is now a need for a better system which ensures greater
traceability of their products. Due to Scanjet’s lack of experience and knowledge about
Clarion as a programming language, expanding the existing solution can be complicated.
Scanjet Ariston AS evaluates Clarion to have an uncertain future and want to develop a new
system in a well-known development environment. This chapter describes the solution used
today and the philosophy and ambitions for the new software.

2.1 Existing solution
Scanjet Ariston AS uses a solution today which consists of a database and an associated
application. This subchapter gives the reader an overview of how the existing solution
operates today.

2.1.1 Existing database

This subchapter will give a picture of how the old database is built and how data is related.
The existing database is created by an earlier employee of Scanjet without much education in
database modeling. It was created in Clarion, which is an IDE for Clarion (language)
databases. It’s created as a relational database but does not seem to enforce foreign keys.
There are relations between all tables but two, these tables contain very little data and doesn’t
appear to be in use. Figure 2-1 shows an overview of the current database, here the tables are
generalized for an easier overview, and will be expanded upon throughout the subchapter.

 2 Existing and planned solution

12

Figure 2-1 High level overview of the existing database

The model will be split up to give a full description of the database. In the coming figures a
table will have its description as in Figure 2-2. It will contain a table name and may contain
none to several foreign key column names, while pointing to the tables where these keys are
found. In Figure 2-2, to the left (not hatched), a table describing a physical unit, will be
referred to as a component table. Centre (hatched with lighter color), a physical unit, but not
regarded as a component throughout the report. Right (hatched with darker color), other
tables will be described where they’re used.

 2 Existing and planned solution

13

Figure 2-2 Description of tables and how to separate them.

Using Figure 2-3 as an example, Tank uses a value from Shipdata, ship number (ShipNo) to
tell which project it’s connected to. It also uses serial numbers (serienummer) from
Sensordata to tell which sensors are connected to a given tank.

Figure 2-3 Tables of physical components and how they are connected to a project.

The tables considered other tables, are Shipdata, Feildata (error data), and prosjekt (project).
Shipdata gives description of which ship components are installed in, what project a ship is
connected to, delivery and warranty dates, and software information. Prosjekt (Project) gives
a name and number to a project. Feildata (error data) contains records of detected faults in
components.

Below in Figure 2-4 the administrative tables are expanded on from Figure 2-1. It describes
communication logs, contact information, drawings and offers. These are all connected to a
project through journal.

 2 Existing and planned solution

14

Figure 2-4 Administrative tables of the Clarion database

Figure 2-5 shows the remaining tables of the Clarion database. They contain information
about updates to components (Updateda) and some non-context data about components
(Reportte).

Figure 2-5 Tables in Clarion database which is not related to other tables

2.1.2 Existing application

To manipulate records in the database, Scanjet Ariston AS uses an application called
Shipdata. The application contains different features to add, view, edit and delete information
about the company’s projects and products. Figure 2-6 shows the start page of the application
containing the main menu.

 2 Existing and planned solution

15

Figure 2-6: Shipdata: Start page.

The main menu consists of five main functions shown in Figure 2-7, which are shipdata,
tank, sensordata, oppdatering (Updates) and feilrapport (error reports). The function
Shipdata leads to an overview of all central information regarding project records in the
database. The next function Tank leads to a list of tanks connected to a selected project. Most
sensor sold by Scanjet Ariston is stored in the database and accessed through the function
sensordata, other may be found under vis/rediger which is described in the next section. The
fourth function oppdatering contains information about each update to components or
articles. To trace any errors of products, the last main function feilrapport leads to list of all
errors registered and functions to register new errors.

Figure 2-7: Shipdata: Main menu.

Shipdata has a menu bar containing additional functions. There are three important sub
menus shown in Figure 2-8, which are vis/rediger (1), verktøy (2) and reports (3). Vis/rediger
(1) contains functionality to view records in the database and edit them. The second function
verktøy (2), which stands for tools, is where the user can add new sensors and sensor data,
generate configuration files, search for sensors, copy tank lists and adjust communication
settings. Reports (3) contains functions to generate reports based on records in the database
e.g. a list of sensors for one system.

 2 Existing and planned solution

16

Figure 2-8: Shipdata: menu bar functions.

One of the most used features of the application is sensordata (1) shown in Figure 2-9. When
a new order is being assembled, each sensor is stored through sensordata or the sub menu
vis/rediger. Users may also change or delete records. An important function within
sensordata is programmer sensor (2) which is used to program Scanjet Ariston’s sensors.

By clicking an item in the list shown in Figure 2-9, a window for changing the record is
presented (3). The window shows details about a sensor record and enables the user to change
or add data to the record. As well as editing data, the users may also find where the sensor is
located on a ship by using the function find loc (4). In some cases, its needed to disconnect
sensors from the associated project, which is done by clicking free sensor (5).

 2 Existing and planned solution

17

Figure 2-9: Shipdata: Sensordata and changing a record

In general, the existing application is quite user-friendly as it is and include several great
functions. Data is usually presented in lists which can give a good overview. However, the
lists can get quite long and there are no filter functions to reduce the number of records
shown.

Today, the application supports several good functions regarding sensors. When adding
sensors of types STS, SPT or radar it is possible to add multiple records at a time. The
application also supports importing sensor data from excel files received from subcontractors.
The current application supports functions for programming Scanjet’s equipment. These
functions are crucial for their production.

Scanjet Ariston AS delivers embedded systems for tank control and monitoring, which
require a configuration file describing which components are installed on the ship. The
existing application include crucial function for generating these files which works great
today.

2.2 Planned solution
This subchapter gives the reader an overview of the planned solution and the group’s
ambitions for the new software. As the existing solution is hard to make changes to, the group
has decided to focus on extensibility and generalization of solutions in the new software. The
overall philosophy is to make it future-oriented and extensible without compromising
functionality.

2.2.1 Planned database

To improve something, it requires change. In contrast to the old database, the new solution
will focus on extensibility. To accomplish this, the new database will generalize tables and
account for completely new entry types in the future.

 2 Existing and planned solution

18

To make the new database general there is a drawback, datatype integrity. This means that
some attributes in the new database will be variable, and not hold a specific datatype.

The requirements and design for the new database is explained in chapter 3.

2.2.2 Planned application

An application made over 20 years ago, with GUI elements and plenty of quirks gathered
from its specific area of use, is bound to require a serious update now. The new application
aims primarily to cover the functionality of the old, in a user-friendly and efficient way, all
the while taking measures to be flexible enough to handle significant database changes.

As the new database will sacrifice data type integrity for the sake of generalization, the new
application will have to deal with it to avoid deviation from intended data types. From many
different sources, problems like this might pop up if the intended result is a flexible solution
based on variables where there once were constants. To tackle this issue, another application
layer is planned to serve as a joint between database, GUI and general configuration
variables.

The key element to make this software future oriented and extensible is a resource document
which contains, among other things, information about the structural design of the database.
Figure 2-10 illustrates an overview of the planned solution with a resource file.

Figure 2-10: Planned system with resource file.

 3 Database – Requirements and design

19

3 Database – Requirements and
design

This chapter describes the requirements and needs discussed with the customer regarding the
database and user authentication, as well as suggested design.

3.1 Requirements
This subchapter gives the reader an overview of the customer needs and requirements
regarding the database and user access. The requirements described are needed to develop a
functional, secure and user-friendly database. Details regarding requirements can be seen in
Appendix B.

3.1.1 Database requirements

The database should be developed based on an entity relationship model, made as a
PostgreSQL database and fulfill normalization standards 3NF, preferably BCNF. The new
model should be extensible, future-oriented and shaped such that all existing data can be
transferred. Independent tables that contain significant data should also include simple data
logging to ensure record traceability. [3]

3.1.2 User access requirements

Users of the database should be able to retrieve, add or modify information limited by a user
access groups controlled by the database server. Unauthorized attempts to retrieve data
should fail. Table 3-1 describes the required user access groups that should be implemented.
Table 3-2 describes which privileges each user group should have.

Table 3-1: Required user access groups

User access group Description
Sysop System operators.
Administrator Administrators for production in Norway.
User Normal users for production in Norway.
KRadmin Administrators for Korean production facility.
KRuser Normal users for Korean production facility.

 3 Database – Requirements and design

20

Table 3-2: User group privileges

User KRuser * KRadmin * User Administrator Sysop

View records √ √ √ √ √
Edit records √ √ √ √ √
Add new records √ √ √ √ √
Delete records X √ X √ √

Config file generation √ √ √ √ √
User access control X X X X √
Superuser X X X X √
* Limited to tables component, component_detail, component_error_data, tank, article and project.
Read only privileges in tables article and project.

3.2 Entity-relationship model
This subchapter describes the design of the database in this project represented as an entity-
relationship model. An ER-model is a systematic analysis to define and describe each table
and their interaction with each other in a database. In this subchapter the ER-model is split
into several pieces and described separately. To view the complete model, see Appendix C
and the ER-model guide in Appendix D.

3.2.1 Relationship between main tables

The main tables in the database consists of the six tables: purchase_order, project, article,
component, tank and company. Figure 3-1 illustrates the main tables and their relationships.
The table project contains information about all Scanjet Ariston’s projects, where each
project has a unique attribute, the primary key project_id. In practice, a project number is
used to identify each record, but can have duplicates. To ensure a unique primary key, a
project id is designed for the table, and the project number as an attribute. Each project can
have one or many purchase orders connected, where a one-to-many relationship is designed
between the tables.

As part of Scanjet’s product, instrumentation for tanks are supplied. Each project has a
relationship to one or more tanks. The table tank in Figure 3-1 contains information about
each tank in the project. Tank_id is the primary key of the table and project_id is a foreign
key to connect each tank to a project.

The table purchase_order shown in Figure 3-1 contains a primary key po_number, and the
foreign key project_id where a project can be connected to the order. Each purchase order has
one customer and one production company. To accomplish this connection, two one-to-many
relationships from the table company to purchase_order are designed.

 3 Database – Requirements and design

21

Every PO made by a customer can be for several components for their projects. The table
component in Figure 3-1 contains information about every component and can be connected
by the foreign key po_number to POs. Each PO can be connected to one or more
components. To be able to know which components are connected to which tanks, a one-to-
many relationship is designed from tank to components. Each component can then be
connected to a tank through the foreign key tank_id.

The last main table is article in Figure 3-1 which contains general information about a group
of products. Each record in the table component can be connected to an article_id, where an
article can be connected to one or many components. Each record in article has a vendor
which has produced or sold the items. To be able to trace this, a relationship between
company and article is designed. A company can be connected to one or more articles by the
foreign key company_id in the table article. Over time articles can be obsolete and be
replaced by another article. This requires a unary relationship from article to itself and a
foreign key replaced_by.

 3 Database – Requirements and design

22

Figure 3-1: The relationship between main tables.

3.2.2 Project and tank tables

As described in chapter 3.2.1 each project is connected to one or more tanks. Figure 3-2
describes the tables project, tank, tank_type and their relationships. Each tank has a type
description which in this model is a separate table. Each tank_type can be connected to one or
more tanks. This design is done to prevent users to accidently type in the wrong tank type for

 3 Database – Requirements and design

23

a tank. Tank_type is a foreign key in the table tank and requires a correct input corresponding
with a record in the table tank_type.

Figure 3-2: Relationship between tank and project

3.2.3 Component and tank tables

Figure 3-3 illustrates the following tables: component, component_error_data,
component_detail, tank and their relationships. The table component contains information for
each unique component. To ensure a general and extensible design, a table component_detail
is designed. The table can hold records of additional properties for records in component.
This design also enables new types of components with another set of properties to be created
in the future, without having to alter the database.

Error data for components can be stored in the table component_error_data. Each record in
component can have one or many records in component_error_data. The last relationship
from the table component is a one-to-many relation with itself. Products like radar consists of

 3 Database – Requirements and design

24

several components. To ensure its possible to trace which are connected, the relationship is
designed.

Figure 3-3: Relationship between component and tank

3.2.4 Company and contact person tables

Figure 3-4 illustrates the tables company, contact_person and their relationship. The table
company contains information about customer, production and vendor companies. To
separate what each company is, boolean attributes are used to identify whether it is a
customer, a production or a vendor company. Each record of a company can be connected to
one or more records in contact_person with a relationship between the two tables.

 3 Database – Requirements and design

25

Figure 3-4: Relationship between purchase order, project and company

3.2.5 Article, company and attachment tables

Each component in the database is connected to an article which describes the general
information for a group of components. In practice, an article number, which is an attribute in
article, is used instead of the primary key article_id. The design is chosen because duplicates
of article numbers may occur.

Articles can have e.g. drawings or certificates connected to an article number. Figure 3-5
shows the tables regarding attachments and articles and their relationships. Information about
each attachment is stored as records in the table attachment, which has a many-to-many
relationship with articles. Each article can have many attachments, but also an attachment can
be connected to many articles. If additional attributes are needed for a record, the table
attachment_detail is designed with a one-to-many relationship from attachment. A record in
attachment also contains a predefined type description as a foreign key from the table

 3 Database – Requirements and design

26

attachment_type. This solution is designed to maintain consistent type descriptions and
prevent typos.

For each attachment it’s vital to know which revision it has. A table attachment_revision in
Figure 3-5 is designed to contain records with revision details. A record in attachment can
have one or more records in attachment_revision. To ensure it is possible to add new
attributes in the future, the table attachment_revision_detail is designed to hold records of
additional attributes for revisions.

In Figure 3-5 a one-to-many relationship from company to article is designed to be able to
connect vendor companies to articles which they have produced. Each record in article can
only be connected to one record in company.

Figure 3-5: Relationships between attachments, article and company

 3 Database – Requirements and design

27

3.2.6 Article and sensor specification tables

A large part of Scanjet’s components is sensors. While other types of products split their data
between component and article, sensors are special in that they also have data on another,
more general level. This level is named sensor_specification. Data such as the sensor’s
accuracy is stored here. One sensor_specification record may be associated with many
different article numbers. In the real world, this distinction only occurs to account for
different wire lengths.

Merging sensor_specification with article data would have resulted in a more intuitive
database design, but also a lot of duplicate data. In addition, this violates the understanding
Scanjet employees have built on how sensors are defined. The ER model cut-out shown in
Figure 3-6 shows the final design with article and sensor_specification as separate tables.

article_type and sensor_category work in similar ways. They define all possible occurrences
of different types. E.g. “amplifier” or “sensor” in article_type, and “pressure” or
“temperature” in sensor_category. This distinction is critical for when using detail tables as
explained below, as well as in chapter 4.2.3.

Would-be columns under article that are not common for all article types, are instead stored
in article_detail. Sensors, for example, have the wire_length property, but amplifiers don’t.
Similarly, this also applies to sensor_specification, where pressure and temperature sensors
naturally have different sets of properties.

 3 Database – Requirements and design

28

Figure 3-6: Relationships between article and sensor specification

3.2.7 Detail and detail type tables

To develop an extensible database, the solutions for table details is designed. This solution is
more general and does not require changes to the database if a new attribute is needed in the
future. Figure 3-7 illustrates the relationships between each detail table and detail_type. The
table detail_type contains information about detail types, which is connected to every detail
table with a one-to-many relationship. Data_type is a table which contains information about
the datatype of a specific detail type. Each record in data_type can be connected to one or
more detail_type records.

 3 Database – Requirements and design

29

Figure 3-7: Relationships between details and detail type.

 4 Migration of data – Requirements and design

30

4 Migration of data – Requirements
and design

When a new database is created in the attempt to improve an existing solution it is often
required to preserve the old data. For the new database to be an improvement, it must also be
different from the current design. This creates the issue of how to preserve the current data. In
this chapter, problems and solutions to various migration topics will be discussed regarding
the migration between the existing Clarion database and the new PostgreSQL database.

It is recommended to read chapter 2.1.1 Existing database and 3.2 Entity-relationship model
to be acquainted with the two databases.

4.1 Requirements and restrictions
The original task description of data migration does not specify which data to be transferred.
Requirements and restrictions for migration of data are made in cooperation with Scanjet.
The migration will take place after this project by the company itself. The migration must
account for future data. Ideally, executing the migration should not require programming
knowledge.

Generally, all component and project related data should be transferred without losing its
relations. No contact information or data about customers should be transferred by the group.
Selected data will be procured by Scanjet and should be delivered to the group. Figure 4-1
shows which tables should be transferred to PostgreSQL, and data which should not be
migrated. All details should go to component_details, although ideally, they should be
distributed amongst several detail tables. The exception is attachment_details. Further
requirements and restrictions can be read in Appendix B.

It is important to note that not all fields in the new database will be filled out during the
migration. Old data will not be as rich in information as new entries.

 4 Migration of data – Requirements and design

31

Figure 4-1 Clarion tables which should be transferred

4.2 Migration issues
The main functional difference between the Clarion and PostgreSQL database is the structure
of the tables. This subchapter will try to explain the differences, thus giving an impression of
what the challenges are. Central questions are: where should data be put in the new database?
How are the data relations preserved? Are there data that don’t fit the new model?

4.2.1 Clarion, and differences from Excel

In Clarion, the column Dallasid, and some others which is found in several tables, is
unreadable in its current format as can be seen in Figure 4-2. Details of which tables and
columns are concerned can be seen in Appendix G.

Figure 4-2 In Clarion, Dallasid is unreadable in several occasions

 4 Migration of data – Requirements and design

32

Several columns which are used as the Boolean data type are of String data type in Clarion,
these are expected to become true Boolean values. Figure 4-3 shows an example of this, there
are several occasions of similar use of Boolean values.

Figure 4-3 Sensordata's Used and Scrapped columns. Both are used as boolean values, but
uses varying ways to indicate true and false

Additionally, the Clarion date data type counts days from 28-12-1800 as zero, while Excel
counts days from 00-01-1900 also as zero. Which means the date will be wrong by
approximately 100 years if not dealt with.

4.2.2 Project related data

In PostgreSQL project data is more centralized, where one table stores the data of the
previous prosjekt (project) and Shipdata tables. There has however been a change in the
structure between components and project. For increased traceability, a component is now
connected to a PO. To keep the relations from the existing database, dummy POs must be
created for every existing project. Component tables are, as in chapter 2.1.1, considered
tables not hatched in figures depicting the old database. These tables have been created for
each article type, except for Lidec and Sensordata which contain many article types. The
changes between the databases and generally how the data must be directed regarding project
data can be seen in Figure 4-4.

Figure 4-4 Indicates the structural changes of how project data is stored

 4 Migration of data – Requirements and design

33

4.2.3 Component data

In the PostgreSQL database there are general tables for components, articles and sensors
which are used to describe an item in layers. As mentioned in chapter 4.1, data will be
transferred to component and component_details. The old tables must be split up into two
tables for either component and component_details. The change in details require significant
attention as it restructures the data. The general distribution of components can be seen in
Figure 4-5.

Figure 4-5 General relocation of data between Clarion and PostgreSQL

In Clarion, all tables have specific columns for varying components. Now that a general
solution is chosen, it’s necessary to show how non-general data is stored in the PostgreSQL
database which can be seen in Figure 4-6. All general information will be stored in
component, and all other data will be stored in a detail table. The same will apply to
attachment during migration. After the new system is deployed, this principle will apply to
article and sensor_specificaiton.

 4 Migration of data – Requirements and design

34

Figure 4-6 Component table with belonging detail table

4.2.4 Tank data

The other big deriving issue involves the tank table of the Clarion database. This table mostly
has the same data as before, but sensor installation is no longer in the tank table, but on the
sensor. Figure 4-7 shows an overview of where data from Sensordata and Tank tables are
placed in the PostgreSQL database.

Figure 4-7 General flow of data from the existing database’s tank and sensordata tables to
PostgreSQL's component, component detail and tank tables

 4 Migration of data – Requirements and design

35

4.2.5 Attachment data

The new database will be able to store more data regarding certificates and drawings. In the
Clarion database, only drawings were possible to store in Tegning (Drawing). These will now
be stored in attachment with a detail table and a type table as can be seen in Figure 4-8.

Figure 4-8 Data flow between Tegning from Clarion to PostgreSQL tables

4.3 Choice of tools
There are close to unlimited ways to migrate data, each with its own advantages and
disadvantages. This subchapter will investigate a few possibilities.

4.3.1 Export formats

SoftVelocity Database Scanner is a program used to read tables in Clarion databases, as well
as exporting tables. The following four export formats are supported: tab-, character-, ASCII
value-delimited text files or as JSON arrays.

4.3.2 Required functionality

The following functionalities are required for the choice of tools:

 Conversion of datatypes.
 Calculations.
 Correcting typos.

Transformation and formatting are done in more than one step and it is therefore helpful to
store this data temporarily.

 4 Migration of data – Requirements and design

36

4.3.3 PgAdmin with PostgreSQL

As the goal of the migration is to have the data on a PostgreSQL server, one option should be
to read a text file or JSON array to SQL and transform the data there. Two databases must be
created, one to store the original data of Clarion and the production database. This will
require an additional ER-model. There appears no obvious way to have access to both
databases at the same time, but temporary data may be stored in a JSON dump file and
accessed on the receiving database. The approach of using SQL will be a relative fast
execution but may require significant amount of planning, experimentation and testing.

4.3.4 Devart and Excel

Scanjet suggests using Devart for Excel. This is a plugin for Excel, which can connect
directly to several types of databases. Excel can read all the exportable data formats from
Clarion and Devart can replicate a PostgreSQL database. This can be a visual interface
between Clarion and PostgreSQL. This allows for both databases to be accessible
simultaneously. The downside of using Excel and Devart is that the uploading is slow.

4.3.5 Rad Studio with C++ or PyCharm with Python

The Shipdata application in Chapter 5 uses Rad Studio as an IDE. This also makes for an
obvious choice. Both Rad Studio and PyCharm can read text and JSON files, a program may
load several files and read both the Clarion tables and PostgreSQL tables. They both have
several tools and plugins which can ease the workload. They offer all functionality as the
other options except for visualization. As suggested in 4.3.3, this also requires a lot of
planning and testing.

4.3.6 Picking tools

All choices seem plausible, less for PostgreSQL which doesn’t have a direct interface
between the two databases. It was decided to use Devart for Excel as it is visual, and data can
easily be checked for faults, pre- and post-change. It was noted well into the design that some
PostgreSQL tables required significant changes, which proved hard in Excel. Python was
chosen for this task as it is a high-level, easy to use programming language with many
plugins for known tasks.

4.4 Design
Answering the questions in chapter 4.2 is best done by looking at cases which involves
several of the questions asked.

4.4.1 Project and purchase order migration

Migrating project information is trivial, from prosjekt (Clarion) data is copied to Project and
Project IDs are generated. When moving data from Shipdata, data must be verified that it
belongs to the correct project number as this is the commonality. Figure 4-9 shows the
general flow of data.

 4 Migration of data – Requirements and design

37

Figure 4-9 Relocation of data regarding project table of PostgreSQL

Purchase orders are not a part of the Clarion database, records must be created. These are for
the migrated data a concatenated text string of PO: and project number. For new entries
proper purchase orders will be entered.

4.4.2 Finding project IDs

All Clarion tables shown in Figure 4-5 should use the route in Figure 4-10 to find which
project and purchase order they belong to. There are exceptions to this, among them are
sensordata, PCVGAdata and PC386data which have another joint before getting ShipNo.
These will be discussed separately.

 4 Migration of data – Requirements and design

38

Figure 4-10 How project IDs are derived for components

A component typically has a ShipNo, this can be used to find which project number it belongs
to. The project number will be the same in both the Clarion database and the PostgreSQL
database. From this project number, a project ID has been generated for the PostgreSQL
database.

Later, this process will be referred to as Find project IDs.

4.4.3 Component migration

A Clarion component must be split up and its data relocated to two tables in the PostgreSQL
database. In Figure 4-11 a general component table is used to show how most component
tables will be transformed. Tables which are not included are Sensordata, PCVGAdata and
PC386data, these will be covered in their own sections. A component must go through the
Find project IDs process to find a purchase order. For the migrated data, purchase order is
simply “PO:project number”. A component ID must be generated for each entry and the
serial number inserted with correct PO.

 4 Migration of data – Requirements and design

39

Figure 4-11 Clarion to PostgreSQL transformation of a component table

A component in the Clarion database may have several columns that doesn’t fit the
component table of the new database. These columns must be transformed to fit detail_type
and component_detail, and be stored in the correct table. The transformation is described in
chapter 4.4.4.

Column names from a component in the existing database are given to detail type which will
store all detail names. The detail type is then distributed to any of the detail tables. The detail
tables have a column for the detail value, this is where the column value from the table in the
Clarion database is stored. A complete list of detail_type with new and old names can be seen
in Appendix E.

PC386data and PCVGAdata have an extra step in finding the purchase order, as shown in
Figure 4-12 and Figure 4-13. Sensordata will be covered in Chapter 4.4.6 Tank and sensor
data migration as they are closely related.

 4 Migration of data – Requirements and design

40

Figure 4-12 Finding project ID for PC386Data

A PC386data entry may be installed on either an AWS or and ABU and must therefore in
every case be decided which is true and then a PO may be found.

Figure 4-13 Finding project ID for PCVGAdata

PCVGAdata needs only one more joint to find the PO.

 4 Migration of data – Requirements and design

41

A component has an article ID which corresponds to an article number. This article number
describes many components on an abstract level. Article numbers don’t exist in the Clarion
database and must be given by Scanjet Ariston AS. There may however be many article
numbers for a given type of component. Depending on the table there are columns which
separates one article from another. Sensordata will not be accounted for regarding article IDs.
Appendix F shows how to separate article numbers.

4.4.4 Python script

The transformation described in chapter 4.4.3 regarding component_details are not so easily
executed in Excel. Therefore, a Python script will be developed to work around this issue.
The script must be able to restructure matrices of data as shown in Figure 4-14 and Figure
4-15.

Figure 4-14 Data structure of columns from the existing database which doesn’t fit in the
component table of PostgreSQL

Figure 4-15 Data structure post Python script, now fitting the PostgreSQL database

4.4.5 Check match

In this subchapter a new subprocess will be introduced. This process will use serial numbers
from Sensordata and check if they are found in one of four columns. If found, it will give a
value to the new detail_type called Position in component_detail. If not found it will give a
null value. A flowchart of the process is seen in Figure 4-16.

This process is used in Figure 4-19.

 4 Migration of data – Requirements and design

42

Figure 4-16 Check match subprocess to find sensordata position on tanks

4.4.6 Tank and sensor data migration

The tank table from the existing database holds data concerning tank specifications, but also
about which sensors are mounted and which position it is mounted in. The question regarding
how to transfer existing database’s tank table to the new model is a trivial one and is
explained in Figure 4-17.

 4 Migration of data – Requirements and design

43

Figure 4-17 Finding project id for tanks through the process described in Chapter 4.4.2

In the new database the relation between tank and component are different. Previously a tank
could have up to four sensors installed, and the installed sensors were found in the tank table.
In the new database, a component may have a tank_id to indicate which tank it’s installed on.
As tank names are not unique this may prove tedious as each sensor must find a matching
tank name and correct project_id to verify the tank_id.

The flow of this is shown in Figure 4-18 starting in sensordata where a serial number is
given. It then checks which entry it’s installed on, this gives a tank name (tanknavn) and a
ship number (ship_no). From the ship number a project_id can be derived and must be found
in Tank in the new database. Additionally, the tank name must match. This will indicate
which tank_id the component is installed on.

Because most tank data are mirrored with a new primary key, the previous task may be
simplified by using an additional sheet to find the correct tank_id. This Excel sheet will have
the tank data from the Clarion database, and additionally the tank_id from the new database
as this ID is an incrementing value for each tank.

Regarding the PO this procedure is the same as in earlier components described in chapter
4.4.3. Lastly, the serial number is copied to the appropriate component record.

 4 Migration of data – Requirements and design

44

Figure 4-18 Deriving component data for components in sensordata

The sensor position on the tank will in the new database be stored per sensor. As this does not
fit the general component table, it will be stored in component_detail table with the
detail_type “Position”. Each sensor must then look up which column the serial number is
found in the Clarion database’s tank table, and have the appropriate position written as a
detail on the component. The process is shown in Figure 4-19.

 4 Migration of data – Requirements and design

45

Figure 4-19 Finding sensordata mounting position and which tank it is mounted on and how
it now is stored.

Sensordata in the Clarion database keeps track of calibration results on all sensors. There are
three types of calibration1 details in the Clarion database, one for the general sensors and two
for a special sensor P906 which is a temperature compensating pressure sensor.

The first calibration detail is composed of 4 measurements at 0%, 40%, 60% and 100% of
any given range of a sensor.

The second calibration type measures pressure as millivolts on 11 points at a given
temperature. For the P906 sensor, four of these are needed at varying temperatures.

1 Calibration is a measurement of an instrument comparing to a standard, allowing the calibrator to adjust the
instrument to measure correctly.

 4 Migration of data – Requirements and design

46

The third uses the previously mentioned calibration type and creates a polynomial for each
series. From each of the polynomials it should find milliampere equivalents at four points
(0%, 40%, 60% and 100%). This gives 16 values which are used as an interpolated
calibration characteristic for varying temperature.

To fit the new model of detail_type (text), value (text) and keeping the data in context, it was
decided to store one calibration measurement series as one text. The detail types are shown in
Figure 4-20. As one detail only can belong to one component, four P906 calibrations are
created.

Figure 4-20 Calibration details and its format.

4.4.7 Attachment

The task of migrating attachments is trivial, there are only one table involved from the
Clarion database, Tegning (Drawing). Most columns will go to one table, attachment, with
one detail to the attachment_detail table and unique values of type will go to
attachment_type. Figure 4-21 illustrates the flow of data during migration to new database.

Figure 4-21 Flow of data when migrating Tegning table

 5 Application – Requirements and design

47

5 Application – Requirements and
design

To utilize the new database in a convenient and efficient way, Scanjet has requested a
desktop application to be made. The following chapter outlines the design of this application,
as well as list the interpreted requirements in the opening subchapter.

5.1 Requirements
This subchapter describes requirements and needs discussed with the customer regarding the
desktop application.

A general requirement for the application is that it should be written in C++ using RAD
Studio as an integrated development environment.

As a guiding principle, all parts of the application should be implemented in a way that
allows changes to be made in the future. Either through an easy-to-understand process of
extension, flexible code layers, or simply well commented code. Of course, it is desirable that
more than one of these apply at any given point.

Because access restrictions are imposed server-side based on user roles (see chapter 3.1.2),
the application itself doesn’t have to take security too much into consideration. However, it is
important that the connection with the server remains strongly encrypted, and no
authentication data is stored locally. To handle this connection, one of the software libraries
integrated for RAD Studio (TPgConnection from PgDAC) has been utilized. Other than that,
the application does some access filtering based on the same user roles as before. More on
that later in this chapter. Whether or not this is a secure approach is discussed in chapter 7.

Below are some of the most critical functional requirements for the desktop application. A
more detailed specification can be read in Appendix B.

5.1.1 Adding data – New records

The application should include functionality for adding data and details for each table in the
database. It should also consider the relationships between tables when adding data, e.g.
every purchase order should be linked to a company.

5.1.2 Modify data – Update existing records

The application should allow users to search for desired data through a specialized search
function. When matching data is found, users should be able to update the record.

5.1.3 Grid view – Browse data

The application should allow users search for several data records within a grid view. A filter
function should be included to narrow down the search.

 5 Application – Requirements and design

48

5.1.4 Configuration files and programming of sensors

Scanjet’s systems rely on a configuration file to function correctly. The application should
include a function to generated it by collecting data from the database. The application
should also include a function to program sensors. These functions should be implemented by
Scanjet’s engineers themselves. However, the application should facilitate room for the
functions to be implemented later.

5.1.5 Log in function

The application should have a log in functions where users must enter a username and
password before being able to access any data from the server. Authentication should be done
by the database server and not the application.

5.1.6 Print reports

The application should allow users to print reports based on stored data. The following
reports should be included: a system overview, lists of sensors or labels for one system,
sensors which is not connected to any projects or tanks, lists of all sensors and a total amount
of sensors.

5.2 Graphical user interface
The graphical user interface (or simply GUI) was the first part of the entire application to get
its design specified. The reader should keep this in mind, as the illustrations in this
subchapter mostly served as tools in directing developers and Scanjet Ariston toward a
mutual goal. By reading through this subchapter, the intended result of the product should
become more apparent.

5.2.1 Start page

When starting up the application the user is prompted with the start page shown in Figure
5-1. Other menus and function should not be accessible before a user has logged inn
successfully, e.g. New and Browse.

 5 Application – Requirements and design

49

Shipdata 2

New

Browse

View
Grid

User

Setting

Tools

User name

Password

Log in

Figure 5-1: Design concept of start page with log in function.

5.2.2 Menu

Figure 5-2 shows a complete design of the menu structure for the desktop application. The
first menu layer includes six main functions. The functions New, Browse and View Grid
opens a second menu layer containing buttons for each table name in the database. A second
layer button will open a corresponding panel with information from the selected table.

The Tools button shown in Figure 5-2 opens a second menu layer containing buttons for
generating configuration files, calibration and programing of sensors. These functions will be
implemented by Scanjet Ariston’s engineers.

The two last main functions, Settings and User, leads to different options for authentication,
user profiles, connection parameters etc.

 5 Application – Requirements and design

50

Shipdata 2

New

Browse

View
Grid

User

Setting

Tools

Generate
config

Calibrate AD-
card

Program
P906

TPC config

VPN
connection

User profile

Log in/logoutUpdate

About

User logged in:

Project

Component

Article

Tank

Tablenames..

Opens up a
gridview based on
the table choosen.

The grid will
contain filters
browsing for
certain data.

Custom
views..

Project

Component

Article

Tank

Tablenames..

Custom
views..

Project

Component

Article

Tank

Tablenames..

Custom
views..

Figure 5-2: Design of menu structures.

5.2.3 Panels

Figure 5-3 illustrates a general design of a tab for browsing from or adding data to the
database. The idea is, when a menu layer two item within main functions New and Browse is
pressed, a panel with the most important information is shown. If there is a need to add or
view further information, a button is generated. When pressed, a new panel will be shown on
the right side of the screen containing data for the function. This concept can be done
multiple times where more information can be added or viewed within subfunctions. E.g.
when adding a new project, it is possible to view which tanks are added to the project. The
first panel shows a list of tanks associated with the project and a function button to add new
tanks to the project. This opens a new panel with the correct objects to add information
regarding a new tank. When applied, the new tank is added to the list of tanks.

 5 Application – Requirements and design

51

Shipdata 2

New

Browse

View
Grid

User

Setting

Tools

Tab3Tab2Tab1

Item

Item

Item

Function

Interface for adding or viewing the
most important data

Apply Apply Apply Apply

Function 2 Function 3 Function 4

Function 1 Function 2 Function 3 Function 4

Specific information
for creating or

viewing contents of
function

When pressing a “function” a
panel appears on the right

side with functions and
information for the specific

function

User logged in:

Figure 5-3 A general design of panels

5.2.4 Grid view

The third main function View Grid opens a second menu layer to select which table is desired
to view in the grid. Initially this will show all data in the selected table. This enables the user
to do an advanced search for specific data in the database without knowing exact search
parameters. The design is based on a grid with the possibility to add predefined or user
defined filters to search for data. Figure 5-4 illustrates the grid view panel. The users select
which table to view in the grid by clicking one of the buttons in the second menu layer. Filter
options are presented on the right side of the panel. It is possible to filter out columns from
the view by clicking the checkboxes or apply user defined filters.

 5 Application – Requirements and design

52

Shipdata 2

Project

Product

Article

Tank

Tablenames..

New

Browse

View
Grid

User

Setting

Tools

Column

Filter

Datatype

Operator

Column 2

Column 2

Column 1

MyFilter 3

MyFilter 2

MyFilter 1

Column 3

Column 4

Column 5

Column 6

Column 7

Column n

Time

Number

Date

=

<

>

≥

≤

≠

*arg

Arg*

arg

New Filter

Column Name

Argument

Create

User logged in:

Figure 5-4: Design concept of view grid function

5.2.5 New record / Edit record

Figure 5-5 shows an example for adding a new project with the application. The main panel
(1) contains the information needed to add a project, e.g. project number and project name. A
project is connected to one or more tanks which can be accessed by pressing the function
button Tank (2). This opens a new panel (3) on the right side with a list of tanks connected to
the project and a function button for adding one new tank (4) or a series of tanks (5). When
adding a single tank, a panel (6) will be opened to the right with the necessary information to
fill inn regarding one tank. If adding a series of tanks, a panel (7) will be opened instead. The
user must then define the tank name with a prefix, a number which is to be iterated, a suffix
and the number of tanks to add.

 Figure 5-5 illustrates both functions, adding a tank and a series of tanks, however the
functions cannot be done at the same time.

 5 Application – Requirements and design

53

Shipdata 2

New

Browse

View
Grid

User

Setting

Tools

Project

Component

Article

“Project number”

New TankNew sensorNew project

4/3/2019

4/3/2019

4/3/2019

4/3/2019

4/3/2019

[1] [Tank number] [Tank name]

[2] [Tank number] [Tank name]

[3] [Tank number] [Tank name]

F

5

CT 1

Project number

Project name

Project place

Shipment date

Delivered date

General warrenty

Sensor warrenty

Warrenty expiration

Warrenty description

Memo

Ship name

Ship IMO

Shipyard

Ship number

Hull number

Tank

List of tanks

Add tank

Add tank series

Add new tank

Choose tank type

Purchase order

Software license

Components

Tank name

Height

Memo

Apply

User logged in:

1

2

3

4

6Project

Component

Article

Tank

Tablenames..
Custom
views..

Apply

Add series of tanks

Tank name

Number of tanks

Choose tank type

Prefix Suffixnumber

Height

Memo

7

5

Figure 5-5: Design example of adding a new project with connected tanks

Figure 5-6 illustrates an example of how the browse function will be presented. The example
includes a search for a component by serial number, viewing article data and sensor
specifications for the component. After navigating through the menu, a panel (1) opens where
a keyword must be specified before the search can be executed. If there is a match for the
keyword, a second panel (2) opens containing the most important information for the item, in
this case component with serial number S1000. The user can then view the components
article data by pressing the button Article (3). A third panel (4) containing article data for the
component is presented. In this case the article is a sensor and it is possible to view sensor
specifications by pressing the button Sensor specification (5) which opens a panel containing
the associated information in the sensor_specification table. If any information should be
edited, simply write in the correct information and press update.

 5 Application – Requirements and design

54

Shipdata 2

New

Browse

View
Grid

User

Setting

Tools

Etc..ArticleComponent

S1000

SP1483

4/3/2019

4/3/2019

4/3/2019

4/3/2019

Replaced by newer model

4/3/2019

S1000 A1000

C1234

Pressure sensor

12

0.001

Article data

User logged in:

Project

Component

Article

Tank

Tablenames..

Custom
views..

Serial number

External serial number

Production date

Vendor delivery date

Memo

Product dependency

Article

Purchase order

Installed date

Scrapped date

Scrapped description

Warranty expiration override

Keyword

Search

Vendor item number

Article name

Description

Ex

Warranty number of months

Article number

Memo

Article type

Sensor specification

Replace by

Company

Update Update

Sensor specification

Model

Housing material

Max process temp

Accuracy

Sensor category

UpdateUpdate

Process material

Max process pressure

Process connection

Electrical connection

Supply voltage

Min process temp

Max ambient temp

Min ambient temp

IP grade

Output signal

Nom low

Nom high

Span low

Span high

Component error data

Sensor details

When search
button is

clicked this
panel

disapears

1
2

3

4

5

6

Figure 5-6: Design example of browse function. Searching for a component, a sensor, with
article details and sensor specification data

5.3 Code structure
To achieve the goal of an extensible system, the code structures need not only be thoroughly
documented and commented, but also serve as solid foundation for future development. In
this sub-chapter the higher-level structures will be visualized, and their underlying
philosophies explained. By the end of chapter 5 the reader will have a fundamental
understanding of how the application works and how to properly extend its functionality in
the future.

5.3.1 Overview

The application was designed to consist of four main code parts. The first is the predefined
windows form provided by the IDE. It consists of a lot of hidden code, including, most
notably, the program loop as well as event handlers. This report referres to this part as
mainsource. Here, the application gets tied together.

Then there are the customized GUI control classes, imported through the s_gui header file.
This file attempts to define class hierarchies for panels, buttons, tabs and other GUI

 5 Application – Requirements and design

55

components. Some of which are derived from Embarcadero classes. E.g. panels and buttons
might need class members for storing which database table it’s working with.

Third in line is the configuration layer, named s_datastructure. Most importantly, it describes
the database structure, but also resources for GUI elements.

Finally, there is the SQL interface, named s_sql. It simply defines functions for connecting to
and running queries in a database.

Figure 5-7 shows how the different parts are dependent on each other.

Figure 5-7: High level code dependecies. The rectangles in the top row all represent external
libraries.

A central idea the design is based upon, is the ability to change the database structure without
having to change the code. Of course, some changes somewhere must happen, unless
exhaustively detailed by the database itself, but the project aimed to make these changes
isolated to a single application layer. Therefore, the application otherwise stays
unopinionated on the matters handled by this new layer.

All GUI components introduced in this project are part of VCL. The nature of this library,
and how it’s used in the project is described below.

5.3.2 VCL controls and derived classes (s_gui)

This is a proprietary library for the Delphi language, made and ported to C++ by
Embarcadero. Usage is in a few cases limited due to Delphi compatibility, but this rarely
leads to any serious problems.

 5 Application – Requirements and design

56

To cover the GUI specification, two components were identified as being more important
than others: panels and buttons. Other GUI components are indeed present, but they don’t
necessarily demand extended functionality from their original classes. Panels and buttons
require additional class members for different reasons described below.

Panels are the main building blocks of the GUI. All other visual components are supposed to
stay within these rectangular shapes. The most appealing reason for this is to have one unified
way of positioning other components. Positions, while within panels, are relative to panel
edges. Something which simplifies the placement of components and leaves the updating
mechanisms of positions to the base class.

Panels have been designed to store the pointers for its child components instead of storing
them all directly in the form class. The VCL class TPanel will therefore serve as the base
class for a family of new panel classes. These new classes are primarily split between static
and dynamic. In this case meaning panels that should only get instantiated once, and panels
that may have any number of instances, respectively. Dynamic panels are then branched into
the inner and outer category. Inner panels belong within outer panels. Outer panels are the
panels that populate the tab vector (explained in a later section in this chapter [4]) and grow
to the right on the screen. Figure 5-8 shows the inheritance tree of the panel classes. Note that
only the rectangular classes are ever instantiated directly. The circular classes are used as
abstract classes.

Figure 5-8: Panel inheritance hierarchy.

 5 Application – Requirements and design

57

Together the following panels handle the “New” and “Edit” functionality described in 5.1.1,
and 5.1.2: tables, edit, fk_records, fk_candidates. The requirements for the grid view
described in 5.1.3 is covered by grid, filters, and create_filter. The rest of the requirements in
chapter 5.1 are covered by the static panels.

Why buttons get the same treatment as panels, at least when discussing classes derived from
TButton, comes down to a single problem: Referencing the panel on which buttons exist,
from any event function. The solution proved to be simple as long as the button object calling
the event also had a class member pointing to its parent panel. Any event function may with
this design cast the calling TObject (ultimate ancestor for all embarcadero classes) into its
respective derived button class, and then access the parent panel. The downside to this, is that
all event functions need to know exactly which derived button class it is meant for, and near-
duplicates of functions may occur. Figure 5-9 shows an example of an event being fired,
involving both buttons, panels and casting as mentioned above.

Figure 5-9: Sequence diagram for pressing the cancel button.

Otherwise, the new button classes are branched out in much the same way as panels. Static
buttons belong to static panels, and dynamic buttons to dynamic panels etc. This aims to

 5 Application – Requirements and design

58

create a similar structure between the two controls, even if it mostly serves the purpose of
readability, rather than functional needs. Figure 5-10 displays the inheritance tree for the
custom button classes derived from TButton. As with panels, the circular classes are
implemented as abstract classes.

Figure 5-10: Button inheritance hierarchy.

Two other concepts handled by s_gui are the input boxes displayed in Figure 5-5, and tabs
(think internet browsers). The input boxes are in this project dubbed datafields, hence
s_datafield.cpp.

Datafields are supposed to solve a few issues related to editing a single database record.
Because the database is composed of several different data types, which data type is expected
from any input control should be intuitive. Upon committing this data to the database, and
because the database interface requires data to be passed as AnsiString2, all datafields would
have to return their input data as AnsiString in a controlled way. Therefore, the datafield class
hierarchy not only handles positioning, size and other visuals, but also a unified way of
retrieving, and setting, input data. Figure 5-11

2 AnsiString is Embarcadero’s own string library and data type made for the Delphi language.

 5 Application – Requirements and design

59

Figure 5-11: Data field inheritance hierarchy

Lastly there is the tab class. While a fully functional tab system as the ones implemented in
modern browsers would be nice, a simple to use and easy to understand system of handling
visibility and memory allocation for dynamic panels is plenty for this project.
The tab class has no base class, and no derived classes. It is invisible in the GUI, but handles
panels, and therefore included in the same file. Figure 5-12 shows the class members of
s_tab. Figure 5-13 illustrates how a s_tab class is declared in the mainsource.

 5 Application – Requirements and design

60

Figure 5-12: Tab class declaration in s_gui.hpp

Figure 5-13: Vector of tabs as declared in main form class

5.3.3 Main form (mainsource)

The mainsource documents ties it all together. It consists of one class: TMainForm, which is
a Windows form class derived from TForm. Here the XML configuration and SQL interface
objects get instantiated, as well as all GUI objects, dynamic or static. Events are defined here,
as well as methods and functions meant to assist in tying together this particular application.
This is the least designed of the four code parts but is no less important to the final product.
Figure 5-14 shows a screenshot of the main header file.

 5 Application – Requirements and design

61

Figure 5-14: Example structure of the main form class. Note that the complete application
needs many more events than displayed here.

Aside from events and the class constructor, which are public, are all other members private.
In the field domain, primitive data types are declared before other types. Below that are
methods.

 5 Application – Requirements and design

62

5.4 XML configuration file
In order to comply with the overarching goal of making an extensible application, there
seemed to loom a particular problem over the entirety of the system. Would changes to the
database result in complex changes in the code? If so, the system is hardly extensible at all.
The natural response seemed to be a third layer in the application to serve as a configuration
for how the application should behave. This behavior is based on two inputs: The database
structure (metadata), and customer demands (manual changes). The next few pages describes
in full what this means, and how to utilize it.

5.4.1 Data sources

This section explains what the configuration layer depends on, and from where data originate.
Figure 5-15 shows an overview of this.

Figure 5-15: Data origins on the config "stack"

First off, the configuration layer has two absolute requirements outside its own domain: First,
GUI input control types must be defined in code. This is because these control types must be
hard coded in the XML configuration as well, for when custom data types need to refer to a
user interface representation. The second requirement is a valid database. Meaning a database
with at least one table, and where all tables have a primary key.

 5 Application – Requirements and design

63

5.4.2 Choosing the right technology

The only real requirement for the technology of the configuration file was that it must be
easily editable by any normal installation of the Windows operating system. Text files fit this
requirement perfectly. However, plain text files can quickly become unmanageable when
handling large amounts of structured data. In this case, as the rest of the subchapter describes,
the amount of data is relatively large, also rigidly structured. Therefore, some other kind of
text-based technology is needed.

XML (Extensible Markup Language) seemed to be the solution after adding the requirement
of structuring this data. XML is a simple, well tested markup language that many other
technologies are based on (e.g. Scalable Vector Graphics [5]). Markup languages provide
annotation for text documents in a platform independent manner. In practice, this means data
may more consistently get structured in other forms than one dimensional text.

XML documents are built using elements. Elements may consist of any number of other
elements and attributes. Much like HTML, XML uses opening and closing tags to define
elements. Figure 5-16 displays some basic XML.

Figure 5-16: Basic example XML code.

A fundamental choice befalls the users of XML that the specification doesn’t take for us:
Whether to store data within elements or attributes. This project consistently stores data in
attributes, and never directly within element tags. Not for any performance reasons, although
the two might have different performance impact, but to strengthen the readability of the raw
XML file.

Using the DOM (Document Object Model), an XML document is treated as a tree structure.
In the next section the implementation of this tree structure is explained.

5.4.3 Document structure

As with other parts of the application, this layer should also be structured in the most natural
way feasible. The question then arises as for whom this document should most naturally be
structured for? The answer is a middle ground between application usage (tailored for in-

 5 Application – Requirements and design

64

memory data. See chapter 5.4.5), database metadata (tables, columns, and relations) and
human readability.

Figure 5-17 displays the root DOM node (config), its two child nodes (gui and database)
with their attributes and children. These nodes (denoted with a closing tag) are all XML
elements represented as DOM nodes.

Figure 5-17: Root node in the DOM tree with children and grandchildren

The figure above shows the nodes closest to the root but there are many more nodes further
out in the branches. Figure 5-18 shows the nodes and attributes of the tank table, and one of
its columns (tank_id). This node is found within the tables node.

 5 Application – Requirements and design

65

Figure 5-18: Inspecting a table in the DOM tree.

A DTD (Document Type Definition) has been developed for this document. See Appendix J
for the full specification.

This document defines how the DOM tree should be structured using XML. The DTD may
even assist XML parsers in determining the validity of documents, as well as providing
default values and other functionality. Within this project, the DTD isn’t actually enforced,
but instead serves as documentation, and a syntax for end users when manually editing the
config document. The reason this isn’t enforced comes down to which XML parser is used,
as described in the following section.

5.4.4 XML parser

An XML parser is a piece of software that interprets XML and makes the DOM tree readable
in memory. In this project, the C++ application needed some convenient way of extracting
information from the configuration file.

 5 Application – Requirements and design

66

There are many XML parsers available serving different use cases. For use in this project it
would have to be in C++, and open source. Other than that, it would be beneficial if it was
simple to use. Many parsers like this exist, but none of them are fully XML + DOM
compliant. Meaning, in this specific case, that the DTD document described earlier wouldn’t
be considered when parsing. A fair trade-off for an easy-to-use parser.

After testing two different parsers, pugixml seemed slightly easier to use and was added to the
project dependencies. It should be noted that the tree structure pugixml uses, is DOM-like
only, but this report will continue to use “DOM tree”.
Implementing Xerxes, or any other complicated, and fully DOM compliant parser, would
have resulted in a more fail-safe system from the end user’s standpoint, but the idea was put
down to stay within the time constraints of the project. [6][7]

After calling the parsing function upon launching the application, the DOM tree lies available
in memory to read and write to. However, as briefly explained in chapter 5.4.3, the document
structure isn’t fully tailored for usage by the application. Therefore, this data will now get
transformed for more optimized computation.

Figure 5-19 displays an example of how one such pugixml DOM node looks like in memory.
parent is a pointer to the parent element, first_child points to the first child node, prev- and
next_sibling point to sibling elements. If elements like these don’t exist, they are simply
replaced by NULL pointers. First_attribute however, is a pointer to an attribute, which
contains fewer data fields.

Figure 5-19: A pugicxml node highlighting related nodes.

 5 Application – Requirements and design

67

5.4.5 Instantiated data structure (s_datastructure)

To transform data from the DOM tree correctly to a new data structure, a set order needed to
be defined. Figure 5-20 shows the instantiation dependencies from the bottom to top.

Figure 5-20: Dependencies in the configuration

Figure 5-21 shows the container class for all configuration data. It has only two fields: gui
and db, which are pointers to instantiated data from the gui and database element,
respectively as the two child elements seen in Figure 5-17. This class, with the constructor
shown in fig, is how s_datastructure is implemented in mainsource, by passing the file path
to the XML document.

 5 Application – Requirements and design

68

Figure 5-21: The container class for all of s_datastructure

First off to get instantiated are all the static data, which is strictly defined by developers of the
application. There aren’t a lot, but nonetheless important as other layers may depend on them.
Afterwards comes the database structure (metadata).

Here access levels come into play. Tables and columns all have a set access restriction, but
it’s impossible for the program to know what this should be and must therefore be provided
manually if full access for all users isn’t desirable.

Now comes the optional steps. First are data which are read from selected tables in the
database. In this project data types and detail types (see chapter 3) are included so that they
may be configured with more variables than what is saved in the database.

Lastly customer configuration is instantiated. After all this layer is what is the most
dependent on existing data. In a few cases however, like table and column access levels,
customer configuration data is instantiated earlier, but these cases always provide valid
placeholder values.

To stay within project scope, the parsing process has not gotten any exception handling
implemented to guide the end user in debugging xml code. Instead the parsing function
returns early and leaves the DOM tree empty.

One of the weaknesses with using the pugixml data structure is that it only stores strings.
Iterating through a number of tables and columns looking for a specific match, after casting
them to the correct data type every time, would put a lot of delay in the system. The cost of
using a little more memory seems insignificant when the new data structure can find all
relations to a table in the manner of a few pointer operations. Compare that to using the DOM
tree directly, where the list of all relations would have to be iterated through, compared, and
cast correctly for every operation the application would use it for.

 5 Application – Requirements and design

69

5.5 SQL interface
Besides connecting the application to the server, there also needs to be some sort of API that
can be utilized in code to properly execute SQL queries. This subchapter gives some insight
into the higher-level logic present in the code, and ideas behind the entire interface.

5.5.1 Interface foundations

On handling data exchange between application and server within the constraints of the task
requirements, two basic solutions emerged. Both solutions would need to take an arbitrary
amount of data as an argument, and metadata on where that information is headed, before
somehow executing the correct SQL query.

Solution.1: In many software stacks this could be achieved by creating parametrized
functions server-side (in the SQL language itself), and then call those functions through a
simple abstraction layer in code.

Solution.2: PgDac a precompiled library developed by Devart, handles PostgreSQL database-
functionality. Instead of coding anything server-side are all functions exclusively created
application-side and SQL queries are built and executed dynamically.

Initially, solution 1 was put into development. However, upon encountering issues passing
table names as arguments, this idea was scrapped in favor of solution 2.

5.5.2 PgDac intro

PgDAC is a library for RAD Studio used for PostgreSQL connectivity developed by Devart.
It encapsulates many components used for data transaction between an application and a
PostgreSQL server. There is very little documentation about advantages and disadvantages
between these. Therefore, three of these objects were tested for transactions between the
application and database, Query, Stored Procedure and Table.

Query directly uses SQL queries and will return a cursor of what is selected, or a cursor may
be inserted or edited with a query. It was first thought to be unsafe for SQL-injection but
should be safe by using parameterized queries.[8]

Stored procedure requires functions to be pre-defined, there were attempts to create a
dynamic procedure, which could take table names as parameter. This proved hard, but again
parameterizing SQL code may have solved the issue. It was however discovered at a time
when development was started using Table. [9]

Table reflects a database table and only requires the program to know which table and
column it wants to select, insert, edit or delete to or from. It appeared to be the most dynamic
solution and was chosen for this reason.

5.5.3 Usage/high level logic

The interface consists if a single class that needs to be instantiated by connecting to a
database. Below are the constructor and destructor described in respectively Figure 5-22 and

 5 Application – Requirements and design

70

Figure 5-23. These figures list the parameters in the top and describe both what the function
does and what it returns below.

Figure 5-22 SQL constructor

Figure 5-23 SQL destructor

This next section describes individually the most important methods of the SQL interface.
The methods are all that is needed for an interface between an application and the
PostgreSQL database. The following methods are illustrated below:

 5 Application – Requirements and design

71

 CreateFilterVector in Figure 5-24, creating where conditions
 SelectTableValues in Figure 5-25, viewing a table
 InsertTableValues in Figure 5-26, inserting or editing a table
 InsertLogData in Figure 5-27, inserting or updating log data
 GetDBGrid in Figure 5-28, creating a grid view for a table
 DeleteRow in Figure 5-29, deleting an entry

Figure 5-24 CreateFilterVector method

Figure 5-25 SelectTableValues method

The SQL class inhabits a field: vector<vector<AnsiString>> whereFilter
This whereFilter is used when selecting, editing or deleting records with
the other methods of the SQL class.
CreateFilterVector() creates a vector based on the inputs which
equivilates a where condition.
Methods for adding and removing where condition:
AddFilterVector, RemoveFilterVector
Ex: CreateFilterVector(article_name, “#text#”, “TP”) creates the where
condition: where article_name like ‘%TP%’ (SQL code)
Returns all rows where article name contains “TP”

CreateFilterVector()

Return:Void

Index Data Type Name Description
1 s_column column Describes a given column's data type and name
2 AnsiString operation Operators for SQL where condition
3 AnsiString columnValue Comparing value of where condition

Selects all table values of a given table name
May narrow down search by using one or several where conditions
created by CreateWhereFilter.
columnDef is defined in s_datastructure for each table

SelectTableValues()

Return:
Data type: vector<vector<AnsiString>>
Description: Two-dimensional vector replicating values of a given query
towards a table

Data Type Name Description
AnsiString tableName Name of the table to be selected
vector<s_column> columnDef Describes the columns of a given table

 5 Application – Requirements and design

72

Figure 5-26 InsertTableValues method

Figure 5-27 InsertLogData method

Depending on the state of insert will fill appropriate values to any table
inhabiting the columns created_time, latest_change_time, latest_edit,
times_changed.

InsertLogData()

Return:

Void

Index Data Type Name Description
1 TPgTable tbl TPgTable used in InsertTableValues
2 Boolean insert Describes whether to insert or edit

 5 Application – Requirements and design

73

Figure 5-28 GetDBGrid method

Figure 5-29 DeleteRow method

5.5.4 Underlying algorithms

There are mainly three algorithms worth mentioning. These are the algorithms for
CreateFilterVector, InsertTableValues and SelectTableValues. InsertTableValues uses the
same principle as SelectTableValues in the Insert values to dataset process in Figure 5-31
and will only be explained in the SelectTableValues.

Deletes a row indicated by use of CreateFilterVector, AddFilterVector or
RemoveFilterVector to narrow results.

DeleteRow()

Return:

Void

Index Data Type Name Description
1 AnsiString tablename A postgreSQL table name

 5 Application – Requirements and design

74

CreateFilterVector creates a vector for a where-condition in SQL code. Here the algorithm
must create varying where-conditions based on the data type of the column it tests against.
Table 5-1 shows respectively how operators are transformed and values formatted. Note that
all variables are text strings.

Table 5-1 Input vs output in CreateFilterVector

Inputs
Output
vector

Data type operations columnValue operator columnValue
dtInteger <,>,= a <,>,= a
dtReal <,>,= a <,>,= a
dtBool = a = a
dtTimeStamp <,>,= a ::date + <,>,= date + a
dtDate <,>,= a <,>,= a
dtText text#, #text, #text#, = a like,= a%, %a, %a%, =

SelectTableValues uses one or more where-conditions created by the previously mentioned
method. Then it starts to iterate through all columns in a given table, checking that data types
match the column that is attempted to be read. The information flow is shown in Figure 5-30.

 5 Application – Requirements and design

75

Figure 5-30 Flowchart for SelectTableValues

The InsertTableValues method is used both for new entries and for editing records. In Figure
5-31 the method chooses between three paths which will process the primary keys differently
and then converge when primary key processing is complete. The Insert values to dataset
process uses the same logic as seen in the previous figure regarding data types and columns.
However, the method InserTableValues reads from the input vector instead of writing to a
vector.

 5 Application – Requirements and design

76

Figure 5-31 Flowchart of InsertTableValues method

 6 Status of prototypes and solutions

77

6 Status of prototypes and solutions
This chapter gives the reader an overview of which solutions that has been implemented and
status of prototypes developed.

6.1 Database
The database solution was implemented to Scanjet’s central server rather early and updated
with changes continuously during the project. At the end of this project, a final version was
installed on the server due to attribute misplacements in tables during updates.

Today, the database will allow foreign key columns to contain null values. If desired, this can
be changed by not accepting null in the relationships between tables.

To access the database, user groups are implemented on the server as described in chapter
3.1.2. This enables Scanjet to add new users and connect them to a user group which handles
restrictions. Procedures for login authentication (with a return value representing access
level) and adding users has been created for the database.

6.2 Migration – Solutions
The general approach to the migration is shown in Figure 6-1. Data must be exported from
the Clarion database and imported to Excel. Most data transformation is executed in Excel.
Where required, a Python script is used for advanced transformations. Data is then inserted to
Excel again and uploaded to the new database with help of Devart for Excel.

Figure 6-1 Overview of data migration from Clarion to PostgreSQL

 6 Status of prototypes and solutions

78

The order of tables migrated requires some attention, as there are many foreign keys which
should or must be attended to before a table is inserted. An overview of the order can be seen
in Figure 6-2. The order starts at the top with tables which does not have foreign keys and
moves downward to tables which uses primary keys of the filled-out tables.

Figure 6-2 Order of data migration

6.2.1 SoftVelocity Database Scanner

Before exporting data, formatting in SoftVelocity Database Scanner is required. Hidden
fields must be selected to retrieve all wanted data and some must be hidden to avoid data
corruption. The column Dallasid must be reformatted to show all digits and several columns
in sensordata. These processes, where they apply and how to export data can be read in
Appendix G Chapter 1.1.

6.2.2 New data

Not all data required for the new system to operate exist. Some will have to be created, some
must be acquired from Navision, Scanjet’s ERP system. This data is stored in an Excel book
Appendix H and covers all tables marked with 1 in Figure 6-2 and additionally detail_type,
sensor_specification and article.

 6 Status of prototypes and solutions

79

6.2.3 Python transformation

Some tables in the new database require significant changes in the data structure, this applies
to the detail tables shown in Figure 6-3.

Figure 6-3 PostgreSQL tables that are more easily transformed outside Excel

The Clarion format of the data is shown in Figure 6-4. This data will go through the Python
script and be transformed to fit the PostgreSQL detail table.

Figure 6-4 Data before transformation of Inandata details

The script is an executable file which will be available for Scanjet on a USB drive. When run,
CMD will open and ask for number of components and details as shown in Figure 6-5, once
given, the script will attempt to transform the data. As long as it does not go out of bounds

 6 Status of prototypes and solutions

80

(saying there is more components or details than it actually is) there should be no issues. The
result can be seen in Figure 6-6.

Figure 6-5 Executing the transformation script for one of the component tables, Inandata

Figure 6-6 Data after transformation of Inandata details

Each column today except ID shown in Figure 6-4 , will be its own record in the new
database illustrated in Figure 6-6.

6.2.4 Excel

The migration will revolve around an Excel book which can be seen in Appendix I. This
book has sheets reflecting both the Clarion and PostgreSQL databases. It’s used to read
imported data from the Clarion database, then transform the data and putting it in sheets
fitting the PostgreSQL database.

As the migration will take place after this bachelor project, the migration tool must be able to
handle new entries in the old database. To mitigate this, several Excel-sheets are made for
each of the old database’s component tables.

 6 Status of prototypes and solutions

81

Each Excel-sheet for components to the new database will increment primary keys based on
the previous component sheet. This gives room to expand on primary keys for each of the
Clarion database’s component tables. Figure 6-7 shows two sheets of the new database’s
component sheets, TDU will find the max component_id from TCU and create IDs for itself
based on what TCU’s highest ID is. This means components must be arranged in a given
order to avoid duplicate primary keys. In Appendix I that order is from left to right, starting
with ABU_component. Note that other tables must be uploaded before components can be
uploaded according to Figure 6-2.

Figure 6-7 Shows two component tables from the new database, where one (TDU) increments
component_id from the other (TCU)

The system shown in Figure 6-8 repeats itself for all components except for sensordata.
Sensordata has several _detailToPython as the data stored has varying details.

Figure 6-8 An example from Appendix I showing the most common sheet types

Having multiple sheets for the new database’s component_detail is a necessity as the the
Clarion database’s tables have varying extra columns. These columns must go through a
Python script and must have a component_id, a column name and a value. In Figure 6-9
details from TDU and TCU are put into one detailsToPython. This will not give an error
message, but will however indicate that TCU can have cabling, but does not have installed.
This is not possible and should be avoided by using several sheets.

 6 Status of prototypes and solutions

82

Figure 6-9 Putting TDU and TCU's detail in one sheet, TDU starting from component_id
42277 and TCU from 41225

6.2.5 Formatting

The old dates are wrong with about 100 years, formula (6-1 rectifies the date value.
Formatting to date are done by Excel as the value is written in days.

𝑛 = 𝑜 − (365 × 99) + 26

n = calculated date

o = date to be calculated

(6-1)

Formatting Boolean values are done in several ways, by replacing a symbol with true or false.

Several column names have been changed manually but will not be required to be done again
during migration.

6.3 Application status
This chapter summarizes the status of the desktop application. First, each part of the
application is individually inspected and evaluated. In the end, more general issues are
explained.

6.3.1 Configuration layer

The XML configuration layer currently covers most of the initial design. The instantiated
data structure has been tested and iteratively improved on over the course of the project. In

 6 Status of prototypes and solutions

83

the end, it serves as a solid foundation for dynamically created GUI controls, and their
underlying logic.

Primitive data types and custom data types are now defined using the same enumerated list.
This is not optimal, because custom data types depend on primitive data types. Additionally,
custom data types may, in reality, consist of several different primitives, and the current
implementation doesn’t handle this.

Otherwise the configuration only lacks one central function: Serializing database metadata
automatically. Instead it has to be written semi-manually, as a set of useful code snippets for
Visual Studio Code are included with the source code.

Currently there is no convenient way of debugging the configuration document within the
application. To identify and fix issues isolated to the configuration document, there is no
better way than using third-party options.

6.3.2 SQL interface

The SQL interface have been completed with satisfactory functionality when considering
reading and modifying tables. The performance of reading and editing data is slow due to
iterative control statements of Strings and conversion of data types. The best solution as of
now appears to be through multithreading and should be considered in further development.

6.3.3 GUI classes

The GUI classes consist of three main branches and one standalone class. Most of these are
implemented as designed, and cover the requirements specified for the application.

The tab class handles dynamic panels, but is itself not the base for, nor derived from, any
other classes. The tab class covers its required functionality, and has been tested.

For the other three class hierarchies, most of the functionality is in place. However, the
hierarchies themselves are shallow and is prone to design changes in the future. Additionally,
constructors for the derived classes aren’t simplified enough. To support a more strictly
structured main form, constructors for derived GUI classes should either always take all
required data as parameters, or only data that are common for all custom GUI controls.
Instead, the current solution bends this rule which makes for a more confusing source code.

s_datafield and its derivatives are mostly complete, but lack a unified way of setting data as
AnsiString in controls that handle time-related data types. Otherwise, their visuals are
roughly in place, and have three placeholder buttons implemented for further development.

The panel and button classes are the domain for most of the missing pieces. Static panels and
buttons are in place. As for the dynamic controls, the filter related panels are completely
untouched. The foreign key panels contain a grid, although they are both very unpolished.
The rest of the panels, including buttons have their base functionality in place, but has not
been properly tested.

All GUI components have to be heap-allocated. Because the design for using VCL
components have been derived from testing, rather than designed top-to-bottom with prior

 6 Status of prototypes and solutions

84

knowledge, there are objects in the application still with clear signs of ignorant
implementation. Memory leaks may occur which, depending on severity, could go unnoticed
for a very long time.

6.3.4 Main source

The main form class is unfinished mostly as a product of missing pieces from the other code
parts/layers. Almost all custom GUI classes are represented in this code, but some remain
unreachable because of missing SQL connectivity and bugs in the implementation of
s_datastructure.

Most observations on this are written in chapter 7.

6.3.5 General issues

Due to time constraints, the visibility of class members is in most cases set to public. This
could easily lead to unintentional usage. In relation to this, the use of const and mutable is
also highly sporadic. Although these points aren’t directly mentioned in the requirements
specification, it certainly impacts the overall code quality, and should be taken into
consideration when continuing development.

Exception handling has been ignored and left for future work in all corners of the software.
The upside to this is that no systems in the current solution have hidden flaws covered by
clumsy exception handling.

As with many software systems, string handling is a major issue. VCL objects only accept
AnsiString with very little implicit conversion functionality. Due to the amount of different
ways strings can be stored, this leads to equally many issues. The solution to this has mostly
been to fix it once an issue arises, rather than an application-encompassing rule to avoid them
in the first place. It should be noted that AnsiString is used more in the main source and GUI
classes, while std::string is used in s_datastructure. Exceptions to this rule still occur,
sometimes by necessity. [10]

Some of these points are discussed further in chapter 7.

6.4 Deployment
To deploy the application as an installation file, Inno Setup has been explored. It is a free
installer for Windows applications made by Jordan Russel and Martijn Laan. A benefit using
this program is that it’s well documented. An installation file of the prototype was made with
Inno Setup and tested through a virtual machine using Oracle Virtual Box. [11][12]

A code example is shown in Figure 6-10. The Inno Setup installer generates most of the code
through a simple-to-use wizard. The exception is where to put the configuration file which
must be manually scripted. During this test, it was decided to put the configuration file into
the commonappdata directory.

 6 Status of prototypes and solutions

85

Figure 6-10: Program code for the installation file

For the migration, Scanjet will receive a USB stick with several folders with Excel sheets and
an executable file to run the migration at their behest. The main folder will contain two
folders, one for the main Excel sheets:

 01 Predefined data.xlsx
 02 Read Clarion files.xlsx
 03 Transformation.xlsx
 04 Insert book.xlsx
 Data migration guide.pdf

The other folder will contain the executable file and its associated Excel files in a subfolder.
The executable called Migration.exe, and in the subfolder src two Excel files:

 01_To_transformation.csv
 02_Finished.csv

By following the instructions of Data migration guide in Appendix G, Scanjet should be able
to execute the migration.

Seeing as the database and migration parts of the project have reached a satisfactory level,
Scanjet Ariston should consider additional possibilities regarding the future of the desktop
application.

 Continue development on the current project as it was initially planned
 Reevaluate the project plan, but continue working on the current source code

 6 Status of prototypes and solutions

86

 Inspect the application parts as they are now, and move some of them into a new
project if they are considered usable

 Restart application development and only refer to the old source code when needed.

Out of the four main possibilities for continuing development, Scanjet is recommended to
pursue the third option. The reason for this is that the project development plan and main
form class need serious overhauls to account for a project capable of running with multiple
developers. On the other hand, the SQL interface and XML configuration are fully functional,
and may be transferred into a new project as they are. This is not to say these layers are
flawless and demand absolutely no polish, but can be built upon rather than extracting code
parts.

 7 Discussion

87

7 Discussion
When starting this project, the group was recommended by the supervisor to use the
development methodology called Scrum. For two of the group members, this methodology
was completely unknown. Additionally, the group had very little experience with planning
software development. As a result, the planning could have been more efficient in the start
with a little more research on software planning.

When developing the ER-model for the database, we used most of the aspects of Scrum. We
had regular meetings with the customer to discuss the model, planned sprints of one week
with tasks to be done and had an early prototype to evolve. However, when we started
developing the application, we moved away from Scrum. Reasons might be that we were not
too experienced with developing an application. We had to try and fail to get any progress
and were struggling to work parallel with the same application. At this point we were going
towards a more traditional sequential development approach where we had to finish a part
completely before advancing to the next part. If something was not correct, we had to go back
to the previous part and fix the problem before advancing.

7.1 The database
Judging by the initial requirements, the database had no real restrictions in terms of shape. As
long as it could handle all the data from the old database and was made in PostgreSQL, we
had the opportunity to design it as we saw fit. One major issue kept prodding at our project:
Whether to sacrifice data type integrity for the sake of a cleaner database structure? Down the
line we knew this would lead to a more complex desktop application. Because if the database
can’t keep the data type integrity, the application would have to. Looking back, this
philosophy of generalization launched the project onto a slippery slope of unfortunate design
choices. Simple problems suddenly called for complex solutions to account for variables
where there once were constants.

Further design choices begged the question: to which degree do we need to model reality?
Many columns today store strings instead of selecting from a predefined set of data. E.g., the
country column in the company table, which, of course, only has a few hundred valid values.
Single-column tables like this are useful to define things that exist, but also turns the design
process into a philosophical discussion on the structural reality of all things. To draw the line
somewhere, we decided to only create relations like this where it significantly helped the
logic of the application. We mention this as a disclaimer for readers who might think we
attempted to create a “perfect” database. In truth however, we have strived to create a product
that is both intuitive and simple, all the while modelling it for the future of the desktop
application and the data itself.

A choice was made during development of database to focus on designing main tables to
comply with the 3NF standard. For tables not considered main tables, it was to fulfill at least
the requirements for 1NF or higher where it was a significant advantage for the application.

After deciding on the ER model, user groups and access restrictions had to be defined. On
this point, the customer requirements were very unclear. Some of this was of course because
Scanjet themselves had not yet decided if the solutions we provided were good enough for
deployment outside offices in Norway. Another reason was that the restrictions had to be

 7 Discussion

88

defined within the structure of the new database, which we in the project group naturally
understood better than them. What we believe we should have done, was to have Scanjet
define these restrictions in a few sentences before getting mixed up in the thought process of
the model design. We could then, based on this, design access restrictions on our own.

7.2 Migration
Starting the data migration project, no guidelines had been given on what data was to be
transferred. What was given was that the data structure was greatly differing between the
databases and a suggestion to use Devart for Excel. As the group had not partaken in any data
migration before it was easy, and a good choice to use Excel. This gave a good overview of
the data and an easy interface between databases, where one can simply point to cells in the
other database. The Excel books created are performance wise, not efficient. Several Excel
books must be used to perform tedious copying between books. Using more scripts and
directly uploading to the databases would likely save time during the migration process but
would require more planning. Due to the many tasks and little time, only one person has
worked on this task.

For a larger database, Excel is not recommended. In the relatively small database migrated
Excel uses significant time on processing tables.

For some transformation of data, PyCharm with Python was used. Before using Python, we
attempted to use RAD Studio with C++. The documentation proved lacking and the group
had issues reading CSV files. The work revolved around using loops and putting together
two-dimensional arrays which any language should be able to perform. After some time
attempting to use RAD studio, the group chose to use PyCharm as it has easy-to-use plugins
for reading and writing CSV files.

A full-scale test may take over a week to complete. There has not been time to do this,
however the concepts are tested. The issues, if any, will likely revolve around foreign and
primary keys. Keys aren’t always derived from a unique identifier, and may give duplicate or
wrong keys, though unlikely. The other likely issue revolves around memo type fields, in
other words, fields that have more than one value in the Clarion database. These fields are
known to corrupt tables by being misplaced during import to Excel. An important lesson
learned, is that the database should be locked for changes when migration design is started.

7.3 Application
On developing the desktop application, a lot of things could’ve been done differently. The
sheer ambition of the sub-project didn’t match that of e.g., the database. Nor were the hours
disposed for the desktop application successfully split between project members. One of the
issues with this, stems from the development methodology. Because the intention was to
develop all project parts iteratively using a Scrum-like methodology, too little time was put
aside for pure planning, design and brainstorming in general. Each sprint, the idea was for
individual members to “make something work”. This turned away the possibility of an
overarching design. We don’t blame this on the wrong choice of methodology, but rather our
usage of it. Perhaps the outcome would have been different had we spent the first few sprints
solely on planning and design tasks.

 7 Discussion

89

Had the overarching design been put into place early on, there would be a great deal more
room for working in parallel. This has been one of the most damning factors for the
development of the desktop application. During most times there was only one member
working on it at a time. A solution to this could have been achieved by designing the GUI,
SQL interface and XML configuration to be independent of each other. This would have led
to a more complex development process when tying it all together, but perhaps an overall
advantage.

Some of the individual design choices were also ill advised due to them demanding
exponentially more time testing and therefore caused the project to halt at code
implementation. An example of this is the idea of virtual views. No longer would problems
be contained within a single table upon editing a record, but instead involve multiple chains
of tables that all could have individual flaws related to many different layers of the
application. Instead of defining these virtual views in the configuration document, they could
be hard coded in the GUI. While a weaker, less extensible solution, it would also be simpler
to test and therefore not block further development for as long as it did.

One of the requirements not met is the user manual. This was supposed to document the use
cases for the application, but as it hasn’t reached a satisfactory level, we decided against
spending time creating this. However, the time was used to improve database documentation.

PgDAC objects appears to work best as designer objects and used for defined tasks, typically
for grids. This is something PgDAC seem to do very well in the demo project that follows
with the installation, it is however written in Delphi (programming language). The demo
project mostly considers using grids which was something the group did not aim for. The
documentation of PgDAC is quite weak, especially for C++, and few code examples are
found online. Some code can be found on Devart’s forums, again it’s mostly for Delphi but
was helpful as most methods uses close to same syntax and names. Devart employees are
eager to assist in any problems and should have been used more during the development
stage. [13]

One goal for the application was to make it dynamic and being able to adapt to the database.
Thus, requiring general methods in the server-client interface. From the XML configuration
file, resources as table names and column descriptions were available. These parameters were
used to create a dynamic method for selecting and modifying data. In design, it appeared a
good solution, realistically it was a slow method.

Alternatively, more processing should be server side. Either by use of specific stored
procedures or dynamic SQL to move a lot of processing to the server. Triggers could also be
used on some fields, most notably on the log data fields found in most tables.

JSON (JavaScript Object Notation) was considered as an alternative to XML. The format is
used for many of the same use cases as XML, and is in many ways simpler. The main
arguments for the use of JSON include array functionality, its lower verbosity and no need
for end tags. However, pugixml proved very simple to use, with no noticeable drawbacks in
terms of performance, and was therefore never replaced.

Considering the amount of trouble we encountered trying to develop an ambitious application
in a new language in a new development environment, we looked back at completely
different and possible approaches. Since the intention of the system is to provide database
access abstraction for both in-office and international Scanjet employees, maybe one solution

 7 Discussion

90

could fit both? The wish for a C++ based application was clear to us at the start of the project,
but with sufficient research maybe a more adapted solution would have come into sight?
Even if Scanjet has no intention of learning a new language, there are possibilities for dealing
with HTML/CSS through so-called What-You-See-Is-What-You-Get editors, and the back-
end code can execute programs with lower-level functionality.

7.4 Further development
During the discussions regarding user access groups, one of the topics were if users in Korea
should only be able to see data in database regarding projects they were involved in.
Although this topic was researched, no obvious solution was found. As part of the further
development of user restrictions, this topic is recommended to look deeper into.

The use of proper namespaces was not considered in the original project design. This would
be helpful in organizing the volume of symbols introduced in the project, at least when
implementing in a larger project.

One of the software layers that we functionally finished was the SQL interface. While
covering the demands we had when planning, it ended up slower than expected. This was due
to heavy string handling, and layers upon layers of control-statements and loops. To combat
this, the code should get a thorough inspection to see if any unnecessary copy operations are
happening. In addition to this, if such measures still provide unsatisfactory results,
asynchronous programming should get introduced. PgDAC are considered thread-safe,
although, it may require many other code changes to make all related methods being thread-
safe. Still, when dealing with possibly slow internet connections, this could yield very
positive results in responsivity and overall user experience.[14]

One of the many problems that could emerge in the future are custom data types that are
incompatible with any one input control, and therefore demand multiple. For this problem
the current design takes no measure, and would instead require multiple datafields for a
dataset that is stored in only one string. To fix this, for say an array of tuples, this would have
to be defined in a new class inherited from s_inputfield., or better yet streamline it by
implementing some unified field to hold any number of input controls in the base class.
Either way, this was beyond our reach for this project, but we urge future development to
prioritize this issue before it becomes a more complex issue.

 8 Summary

91

8 Summary

Scanjet Ariston AS want a new database and an associated application to store information
about their projects and products to ensure product traceability. The following points
summaries the goals achieved during this project.

 A new database has been developed using PostgreSQL and has been installed on
Scanjet’s central server.

 User groups and their restrictions has been defined for the new database and
implemented on the server.

 A guide to understand the ER-model has been created for Scanjet Ariston AS to assist
with further development of the system.

 Methods for migrating data from the existing system to the new database has been
developed using Devart for MS Excel and a Python app.

 A complete guide on how to perform the migration is created and will be delivered to
Scanjet Ariston AS. The migration itself will be done after this project by Scanjet
themselves.

 A configuration layer using an XML resource file has been made in Visual Studio and
can be imported to any Embarcadero or Visual C++ project through one header file.
This header file depends on pugixml.

 An SQL interface has been developed using PgDAC that handles any database structure
and can be imported to any Embarcadero C++ project through one header file. Its
general design functionally works, but comes at a significant performance cost. It is
dependent on the new configuration layer.

 GUI classes are partly designed and implemented in a desktop application. Some of its
functionality is ready for use, but demands additional work to reach project
requirements. It is also dependent on the new configuration layer.

 A prototype of the application has been developed using the three software parts above.
It isn’t finished, some of which is a product of the GUI classes being incomplete

 References

92

References

[1] Capesoft, what is clarion, 2019, available:
https://www.capesoft.com/accessories/WhatIsClarion.htm , accessed on: 19.04.19

[2] It knowledge portal, Software development methodologies, available:
http://www.itinfo.am/eng/software-development-methodologies/, accessed on:

[3] Wikipedia, Database normalization, available:
https://en.wikipedia.org/wiki/Database_normalization, accessed on: 14.04.19

[4] Embarcadero, TObject class, available:
http://docs.embarcadero.com/products/rad_studio/delphiAndcpp2009/HelpUpdate2/EN/h
tml/delphivclwin32/System__TObject.html accessed on: 12.05.19

[5] W3cschools, SVG Tutorial, available:
https://www.w3schools.com/graphics/svg_intro.asp

[6] Pugixml, Pugixml, available: https://pugixml.org/ accessed on: 12.05.19

[7] Github, Topic: xml, 2019, available: https://github.com/topics/xml?l=c%2B%2B
accessed on: 02.05.19

[8] Stack overflow, parameterized query, available:
https://stackoverflow.com/questions/4712037/what-is-parameterized-query, accessed on:
14.05.19

[9] Stack exchange, parameterized table name in dynamic sql, available:
https://dba.stackexchange.com/questions/212815/parameterize-table-name-in-dynamic-
sql, accessed on: 14.05.19

[10] Jonathan Corbet, improving kernel string handling, available:
https://lwn.net/Articles/643376/, accessed on: 10.05.19

[11] Jrsoftware, Inno Setup, available: http://www.jrsoftware.org/isinfo.php accessed on:
13.05.19

[12] Virtualbox, Virtualbox, available: https://www.virtualbox.org/, accessed on: 13.05.19

[13] PgDAC, Component List, available:
https://www.devart.com/pgdac/docs/components_pgdac.htm, accessed on: 14.05.19

[14] PgDAC, Are the PgDAC connections components thread-safe?, available:
https://www.devart.com/pgdac/docs/faq.htm, accessed on: 14.05.19

 Appendices

93

Appendices

Appendix A Task description
Appendix B System requirement specification
Appendix C ER-model
Appendix D Shipdata 2 ER model guide
Appendix E List of columns which becomes detail types and its renaming
Appendix F Overview of article numbers and how to separate
Appendix G Data migration guide
Appendix H Predefined data for migration (USB, confidential)
Appendix I Migration Excel Book (USB, confidential)
Appendix J Document Type Definition

Appendix A

Appendix A

 APENDIX B

1

System requirement specification

for
PostgreSQL database “Shipdata 2” for Scanjet Ariston AS

Version 1.0

Prepared by Sindre Eiken, Martin Holm and Espen Buø

Date..

 APENDIX B

2

Contents
1. Introduction .. 3

1.1. Purpose ... 3

1.2. Definitions, acronyms and abbreviations ... 3

1.3. References .. 3

2. General description ... 4

2.1. Product perspective .. 4

2.2. Product features ... 4

2.3. User class and characteristics ... 4

2.4. Operating environment .. 5

3. Specific requirements ... 6

3.1. Database ... 6

1.1.1. Functional requirements ... 6

1.1.2. Non-functional requirements ... 6

3.2. Application .. 7

1.1.3. Functional requirements ... 7

1.1.4. Non-functional requirements ... 8

3.3. Migration of data .. 8

4. External interface requirements ... 10

4.1. Software requirements ... 10

 APENDIX B

3

1. Introduction

1.1. Purpose

This specification document describes the requirements and functions specified this “Shipdata 2”
database for Scanjet Ariston AS. The existing database is based on Clarion, which is a file-based
proprietary solution. Scanjet Ariston evaluates it to be considerable risk to continue using Clarion
because of its uncertain future. As the company has grown into an international company, there is now
need for a client/server-based solution.

1.2. Definitions, acronyms and abbreviations

 DB – Database
 ER – Entity-Relation

1.3. References

https://krazytech.com/projects/sample-software-requirements-specificationsrs-report-airline-database

 APENDIX B

4

2. General description

2.1. Product perspective

The database system stores the following information:

 Product details

It includes serial numbers, article number, product type, calibration data, cable length etc.

 Project data

It includes project number, project name, location, ship number, ship name, shipyard etc.

2.2. Product features

2.3. User class and characteristics

Users of this system should be able to retrieve and add information about projects and equipment.

User function group 0: System operator (Sysop)

 User access.
 Full access.
 Add, edit and delete tables in database.

 APENDIX B

5

 Show, edit and delete information.
 Configuration file generation.

User function group 1: Administrator (Admin)

 Show, edit and delete information.
 Configuration file generation.

User function group 2: User

 Show and edit information.
 Configuration file generation.

User function group 3: KR admin

 See only components that are available and not
 Limited access to certain tables.

o Be able to replace sensors.
o Add tank data.

User function group 4: KR user

 Read only access to certain tables.
o Available sensors and electronics.
o Limited product information to Kora production.

2.4. Operating environment

Following points is the operating environment for the “Shipdata 2” system:

 Client/server system
 Operating system: Windows
 Database: PostgreSQL
 Platform: C++

 APENDIX B

6

3. Specific requirements

3.1. Database

1.1.1. Functional requirements

Database structure:

 The database should be made using PostgreSQL.
 The database should be manipulated using PGadmin.
 The database should be based on an ER database model.
 All existing data must be shaped into entity relation model.

Data logging:

 All independent tables must include simple log data.

Accessibility:

 Accessible from offices in Norway.

Security:

 Unauthorized attempts to retrieve data should fail.
 Database must be SQL injection proof.

Migration:

 All existing data must be transferred to the new database.

1.1.2. Non-functional requirements

Structure:

 Database should be extensible.
 Relationships between project, products and articles should be unambiguous.

Documentation:

 All SQL procedures and views must be documented outside of code.

 APENDIX B

7

3.2. Application

1.1.3. Functional requirements

Project functions:

 User should be able to add new, edit and delete projects.
 User should be able to add new, edit and delete customer details.
 User should be able to add new, edit and delete case handler details.
 User should be able to add new, edit and delete ship name and ship yard details.

Tank functions:

 User should be able to add new, edit and delete tank data.
 Tank data should always be linked to a project.
 User should be able to add, replace and delete tank sensors.
 User should be able to copy tank lists.

Sensor functions:

 Users should be able to add new, edit and delete sensors and sensor data.
 Users should be able to program sensors.

Electronics:

 User should be able to add new, edit and delete electronics components. This includes AD cards,
amplifiers and Zener-barriers.

Hloa sensor:

 Users should be able to add new, edit and delete Hloa Sensors.
 Users should be able to add new, edit and delete Hloa electronics.
 User should be able to program Hloa equipment.

Surveyor models:

Surveyor models include TCU, TDU, ANZB485, ANZBANAR6, ANZBANAR7, Water ingress, TPC350,
TPC196 and TPC 140.

 Users should be able to add, edit and delete surveyor models.
 User should be able to see Old modules.

Print reports

Users should be able to print reports for following items:

 System overview.
 Sensor list for one system.
 Sensor labels for one system.
 Print free sensors.

 APENDIX B

8

 Print all sensors.
 Show total sensors.

Other products:

Other products include Inclinometer, Monitor and PC.

 Users should be able to add, edit and delete and delete products.

Users should be able to generate a configuration file based on data from database.

Log in function.

Users should be able to use a search in the software.

Users should be able to find fault history.

Support/help.

1.1.4. Non-functional requirements

Language:

 English

GUI

 The application should feel better than the original.

Source-code:

 All code should be human-readable.

3.3. Migration of data

For an overview over which tables are transferred during the migration, see Figure 3-1.

 Generally, all data in the tables should be transferred with its relations intact.
 Most of the yellow tables should be linked to an article number
 A guide to executing the migration should be provided
 Purchase orders should be generated with suffix PO: and the project number
 The tool created for migrating data should be extensible to allow migration at a later time when

new data is stored in the Clarion database

 APENDIX B

9

Figure 3-1 Shows which tables will be migrated

There are however exceptions:

 Sensordata should not be connected to article numbers
 ABU and AWS should not have details (Non-general columns)
 Many of the non-general columns in yellow tables should be distributed to component_detail,

article_detail and sensor_detail, but will not, all should be used as component_details. Only new
data should use the other detail tables.

Scanjet Ariston will supply data for some tables in PostgreSQL:

 Article
 Article type
 Sensor specification table
 Sensor category
 Company
 Contact Person

 APENDIX B

10

4. External interface requirements

4.1. Software requirements

 Operating system: Windows 10 32/64 bit.
 PostgreSQL database.

[1,1]

company-attachment

tank-component

company-article

purchase_order-component

article_project

attachment_revision-attachment_revision_detail

detail_type-attachment_revision_detail

attachment-attachment_detail

component-component_error_data

article-article

attachment-attachment_revision

component-component

detail_type-sensor_detail

detail_type-attachment_detail

company-purchase_order2

detail_type-article_detail

detail_type-component_detail

data_type-detail_type

sensor_specification-article

sensor_category-sensor_specification

sensor_specification-sensor_detail

article_type-article

article-attachment_article attachment-attachment_article

attachment_type-attachment

company-contact_person

company-purchase_order1

project-purchase_order

article-article_detail

article-component

component-component_detail

project-tank

tank_type-tank

attachment_revision_detail
detail_type Character varying(25) NN (PFK)
attachment_revision_id Integer NN (PFK)
detail_value Character varying(150)
created_time Timestamp
latest_change_time Timestamp
latest_editor Character varying(50)
times_changed Integer

component_error_data
component_error_data_id Integer NN (PK)
component_id Integer (FK) (IX1)
error_description Text
error_date Date
action Text
status Text
testrack_id Character varying(25)

 IX_Relationship50 (IX1)

Old columns:

issued_date
expiration_date
class_name

attachment_revision
attachment_revision_id Integer NN (PK)
attachment_id Integer (FK) (IX1)
revision_number Character varying(25)
created_time Timestamp
latest_change_time Timestamp
latest_editor Character varying(50)
times_changed Integer

 IX_Relationship46 (IX1)

attachment_detail
detail_type Character varying(25) NN (PFK)
attachment_id Integer NN (PFK)
detail_value Character varying(150)
created_time Timestamp
latest_change_time Timestamp
latest_editor Character varying(50)
times_changed Integer

data_type
data_type Character varying(25) NN (PK)
cpp_equivalent_data_type Character varying(25)
array_length_limit Integer

detail_type
detail_type Character varying(25) NN (PK)
data_type Character varying(25) (FK) (IX1)
detail_type_description Text

 IX_Relationship31 (IX1)

E.g: Sensor, TDU, TCU, Amplifier

sensor_category
sensor_category Character varying(25) NN
description Text

sensor_detail
sensor_specification_id Integer NN (PFK)
detail_type Character varying(25) NN (PFK)
detail_value Character varying(150)
created_time Timestamp
latest_change_time Timestamp
latest_editor Character varying(50)
times_changed Integer

sensor_specification
sensor_specification_id Integer NN (PK)
sensor_category Character varying(25) (FK) (IX1)
accuracy Character varying(25)
model Character varying(25)
housing_material Character varying(25)
process_material Character varying(25)
max_process_pressure Real
process_connection Character varying(50)
electrical_connection Character varying(50)
supply_voltage Character varying(25)
max_process_temp Real
min_process_temp Real
max_ambient_temp Real
min_ambient_temp Real
ip_grade Character varying(25)
output_signal Character varying(25)
nom_low Real
nom_high Real
span_low Real
span_high Real
created_time Timestamp
latest_change_time Timestamp
latest_editor Character varying(50)
times_changed Integer

 IX_Relationship29 (IX1)

attachment_article
attachment_id Integer NN (PFK)
article_id Integer NN (PFK)

attachment_type
attachment_type Character varying(25) NN (PK)

attachment
attachment_id Integer NN (PK)
attachment_type Character varying(25) (FK) (IX1)
company_id Integer (FK) (IX2)
attachment_number Character varying(25)
attachment_description Text
created_time Timestamp
latest_change_time Timestamp
latest_editor Character varying(50)
times_changed Integer

 IX_Relationship18 (IX1)
 IX_Relationship1111 (IX2)

contact_person
contact_person_id Integer NN (PK)
company_id Integer (FK) (IX1)
contact_person_name Text
phone_no Character varying(25)
email_address Character varying(50)
mob_no Character varying(25)
active Boolean
created_time Timestamp
latest_change_time Timestamp
latest_editor Character varying(50)
times_changed Integer

 IX_Relationship14 (IX1)

company
company_id Integer NN (PK)
iscustomer Boolean
isvendor Boolean
isproducent Boolean
company_name Character varying(100)
tel_no Character varying(50)
address Text
postal_code Character varying(25)
country Character varying(25)
production_location Character varying(50)
created_time Timestamp
latest_change_time Timestamp
latest_editor Character varying(50)
times_changed Integer

purchase_order
po_number Character varying(25) NN (PK)
project_id Integer (FK) (IX1)
production_company_id Integer (FK) (IX2)
customer_company_id Integer (FK) (IX3)
external_order_no Character varying(25)
received_date Date
sm_order Character varying(25)
general_warranty Date
created_time Timestamp
latest_change_time Timestamp
latest_editor Character varying(50)
times_changed Integer

 IX_Relationship12 (IX1)
 IX_Relationship13 (IX2)
 IX_Relationship39 (IX3)

article_type
article_type Character varying(25) NN
description Text

article_detail
article_id Integer NN (PFK)
detail_type Character varying(25) NN (PFK)
detail_value Character varying(150)
created_time Timestamp
latest_change_time Timestamp
latest_editor Character varying(50)
times_changed Integer

article
article_id Integer NN (PK)
article_type Character varying(25) (FK)
sensor_specification_id Integer (FK)
replaced_by Integer (FK)
vendor_id Integer (FK)
article_no Character varying(25)
vendor_item_no Character varying(25)
article_name Character varying(50)
description Text
memo Text
ex Character varying(25)
vendor_warranty_no_of_months Integer
created_time Timestamp
latest_change_time Timestamp
latest_editor Character varying(50)
times_changed Integer

 IX_Relationship26 (IX1)
 IX_Relationship30 (IX2)
 IX_Relationship48 (IX3)
 IX_Relationship21 (IX4)

component_detail
component_id Integer NN (PFK)
detail_type Character varying(25) NN (PFK)
detail_value Character varying(150)
created_time Timestamp
latest_change_time Timestamp
latest_editor Character varying(50)
times_changed Integer

component
component_id Integer NN (PK)
article_id Integer (FK) (IX1)
component_dependency Integer (FK) (IX2)
po_number Character varying(25) (FK) (IX3)
tank_id Integer (FK) (IX4)
serial_no Character varying(25)
external_serial_no Character varying(25)
production_date Date
vendor_delivery_date Date
memo Text
installed_date Date
scrapped_date Date
scrapped_description Text
warranty_expiration_override Date
created_time Timestamp
latest_change_time Timestamp
latest_editor Character varying(50)
times_changed Integer

 IX_Relationship9 (IX1)
 IX_Relationship45 (IX2)
 IX_Relationship111 (IX3)
 IX_Relationship1 (IX4)

tank_type
tank_type Character varying(50) NN (PK)
description Text

tank
tank_id Integer NN (PK)
tank_type Character varying(50) (FK) (IX1)
project_id Integer (FK) (IX2)
tank_name Character varying(50)
height Real
memo Text
created_time Timestamp
latest_change_time Timestamp
latest_editor Character varying(50)
times_changed Integer

 IX_Relationship11 (IX1)
 IX_Relationship2 (IX2)

project
project_id Integer NN (PK)
production_bom_no Integer (FK) (IX1)
project_no Character varying(20)
project_name Character varying(50)
shipment_date Date
delivered_date Date
sensor_warranty Date
warranty_expiration Date
warranty_description Text
memo Text
ship_name Character varying(50)
ship_imo Character varying(30)
shipyard Character varying(50)
hull_number Integer
created_time Timestamp
latest_change_time Timestamp
latest_editor Character varying(50)
times_changed Integer

 IX_Relationship55 (IX1)

Appendix C

 Appendix D

Shipdata 2 ER-model guide

by Sindre Eiken, Martin Holm and Espen Buø

07.05.19, Porsgrunn

 Appendix D

1 INTRODUCTION .. 5

1.1 NOMENCLATURE LIST ... 5

2 OVERVIEW .. 6

3 ENTITIES AND ATTRIBUTES .. 7

3.1 ARTICLE .. 7
3.1.1 Article - Primary and foreign keys: .. 7
3.1.2 Article - attributes ... 8

3.2 ARTICLE DETAIL .. 8
3.2.1 Article detail - Primary and foreign keys: .. 8
3.2.2 Article detail – Attributes .. 8

3.3 ARTICLE TYPE ... 8
3.3.1 Article type - Primary and foreign keys: .. 9
3.3.2 Article type – attributes .. 9

3.4 ATTACHMENT .. 9
3.4.1 Attachment – Primary and foreign keys: ... 9
3.4.2 Attachment – Attributes ... 9

3.5 ATTACHMENT ARTICLE ... 10
3.5.1 Attachment article – Primary and foreign keys: .. 10

3.6 ATTACHMENT DETAIL ... 10
3.6.1 Attachment detail – Primary and foreign keys: ... 10
3.6.2 Attachment detail – Attributes ... 10

3.7 ATTACHMENT REVISION .. 10
3.7.1 Attachment revision – Primary and foreign keys: .. 11
3.7.2 Attachment revision – Attributes .. 11

3.8 ATTACHMENT REVISION DETAIL .. 11
3.8.1 Attachment revision detail – Primary and foreign keys: .. 11
3.8.2 Attachment revision detail – attributes ... 11

3.9 ATTACHMENT TYPE ... 12
3.9.1 Attachment type – Primary and foreign keys: ... 12

3.10 COMPANY .. 12
3.10.1 Company – Primary and foreign keys: .. 12
3.10.2 Company – attributes ... 12

3.11 COMPONENT ... 13
3.11.1 Component – Primary and foreign keys: ... 13
3.11.2 Component – attributes .. 14

3.12 COMPONENT DETAIL ... 14
3.12.1 Component detail – Primary and foreign keys: ... 14
3.12.2 Component detail – Attributes ... 14

3.13 COMPONENT ERROR DATA .. 15
3.13.1 Component error data – Primary and foreign keys: .. 15
3.13.2 Component error data – attributes ... 15

3.14 CONTACT PERSON ... 15
3.14.1 Contact person – Primary and foreign keys: ... 16
3.14.2 Contact person – attributes .. 16

3.15 DATA TYPE .. 16

 Appendix D

3.15.1 Data type – Primary and foreign keys: .. 16
3.15.2 Data type – attributes .. 16

3.16 DETAIL TYPE .. 16
3.16.1 Detail type – Primary and foreign keys: .. 17
3.16.2 Detail type – attributes ... 17

3.17 PROJECT ... 17
3.17.1 Project – Primary and foreign keys: .. 17
3.17.2 Project – attributes ... 17

3.18 PURCHASE ORDER ... 18
3.18.1 Purchase order – Primary and foreign keys: ... 18
3.18.2 Purchase order – attributes .. 18

3.19 SENSOR CATEGORY ... 19
3.19.1 Sensor category – Primary and foreign keys: .. 19
3.19.2 Sensor category – attributes ... 19

3.20 SENSOR DETAIL .. 19
3.20.1 Sensor detail – Primary and foreign keys: ... 19
3.20.2 Sensor detail – attributes ... 19

3.21 SENSOR SPECIFICATION .. 20
3.21.1 Sensor specification – Primary and foreign keys: .. 20
3.21.2 Sensor specification – attributes ... 20

3.22 TANK ... 21
3.22.1 Tank – Primary and foreign keys: ... 21
3.22.2 Tank – attributes .. 21

3.23 TANK TYPE .. 22
3.23.1 Tank type – Primary and foreign keys: .. 22

4 RELATIONSHIPS .. 23

4.1 ARTICLE – PROJECT .. 23
4.2 ARTICLE TYPE – ARTICLE .. 23
4.3 ARTICLE – ARTICLE .. 24
4.4 ARTICLE – ARTICLE DETAIL ... 25
4.5 ARTICLE – ATTACHMENT ARTICLE – ATTACHMENT ... 25
4.6 ARTICLE – COMPONENT .. 26
4.7 ATTACHMENT REVISION – ATTACHMENT REVISION DETAIL .. 27
4.8 ATTACHMENT TYPE – ATTACHMENT .. 27
4.9 ATTACHMENT – ATTACHMENT DETAIL .. 28
4.10 ATTACHMENT – ATTACHMENT REVISION .. 28
4.11 COMPANY – ARTICLE ... 29
4.12 COMPANY – ATTACHMENT ... 30
4.13 COMPANY – CONTACT PERSON .. 30
4.14 COMPANY – PURCHASE ORDER 1 AND 2 .. 31
4.15 COMPONENT – COMPONENT... 31
4.16 COMPONENT – COMPONENT DETAIL ... 32
4.17 COMPONENT – COMPONENT ERROR DATA ... 33
4.18 DATA TYPE – DETAIL TYPE ... 33
4.19 DETAIL TYPE – ARTICLE DETAIL ... 34
4.20 DETAIL TYPE – ATTACHMENT DETAIL ... 34
4.21 DETAIL TYPE – ATTACHMENT REVISION DETAIL ... 35
4.22 DETAIL TYPE – COMPONENT DETAIL .. 35

 Appendix D

4.23 DETAIL TYPE – SENSOR DETAIL ... 36
4.24 PROJECT – PURCHASE ORDER .. 36
4.25 PROJECT – TANK .. 37
4.26 PURCHASE ORDER – COMPONENT .. 37
4.27 SENSOR CATEGORY – SENSOR SPECIFICATION .. 38
4.28 SENSOR SPECIFICATION – SENSOR DETAIL ... 39
4.29 TANK TYPE – TANK .. 39
4.30 TANK – COMPONENT... 40

 Appendix D

1 Introduction
This document is intended as a guide to understand the entity-relationship model developed for
Shipdata 2 for Scanjet Aristion AS. The structure of this document is done in such a way that it
can be used as a “encyclopedia” when working with the database. The table of content in this
document has hyperlinks to each chapter for easier navigation.

1.1 Nomenclature list

Attribute – A column in a database table.

Entity – In this context, a table in the database.

ER – Entity relation.

Relationship – A connection between tables in the database.

 Appendix D

2 Overview
Figure 2-1 illustrates an overview of the ER-model designed for the database shipdata. The
overview does not show normal attributes, only primary keys and foreign keys.

Figure 2-1: overview of tables in the database model with primary and foreign keys.

 Appendix D

3 Entities and attributes
In entities where records of significant data are stored the following attributes are included:

 Created_time – A timestamp for when the record was created.
 Latest_change_time – A timestamp for when record was last changed.
 Latest_editor – Username of the latest editor of a record.
 Times_changed – A counter for how many times a record has been changed.

3.1 Article

Article is an entity shown in Figure 3-1 that contains common information about a group of
components.

Figure 3-1: Article table

3.1.1 Article - Primary and foreign keys:

 Article_id – The primary key of article, each record must have a unique number.
 Article_type – A foreign key attribute from the entity article_type.
 Sensor_specification_id – A foreign key attribute from the entity sensor_specification.

Used when an article is a sensor.
 Replaced_by – A foreign key from the entity article. Used when an article is obsolete

and replace by another article number.
 Vendor_id – A foreign key from the entity company. Used to connect a company as

vendor for articles.

 Appendix D

3.1.2 Article - attributes

 Article_no – Attribute for article numbers. In practice used to identify each article, but
duplicates may occur.

 Vendor_item_no – Attribute storing the vendor’s item number for an article.
 Article name – Descriptive name of an article.
 Description
 Memo – attribute reserved if any extra information should be stored.
 ex – explosion proof classification description.
 Warranty_no_of_months

3.2 Article detail

The entity article_detail shown in Figure 3-2 contains records of details which are not common
for all articles. The entity enables new details in the future to be added.

Figure 3-2: Article detail entity

3.2.1 Article detail - Primary and foreign keys:

This tables have two attributes combined as a primary key:

 Article_id – Primary foreign key from the entity article.
 Detail_type – Primary foreign key from the entity detail_type.

3.2.2 Article detail – Attributes

 Detail_value – Attribute for storing a value of a detail record.

3.3 Article type

The entity article_type shown in Figure 3-3 contains records of article types. Examples: sensor,
TDU.

 Appendix D

Figure 3-3: article type entity.

3.3.1 Article type - Primary and foreign keys:

 Article_type – Descriptive name of an article.

3.3.2 Article type – attributes

 Description – Free text describing the article type.

3.4 Attachment

Attachment shown in Figure 3-4 is an entity that contains records of information for different
types of attachments. Examples are drawings and certificates.

Figure 3-4: Attachment entity.

3.4.1 Attachment – Primary and foreign keys:

 Attachment_id – The entity’s primary key.
 Attachment_type – A foreign key from the entity attachment_type.
 Company_id – A foreign key from the entity company.

3.4.2 Attachment – Attributes

 Attachment_number – Scanjet’s internal attachment number.
 Attachment_description

 Appendix D

3.5 Attachment article

The entity attachment article shown in Figure 3-5 is a connecting entity between article and
attachment.

Figure 3-5: Attachment article entity

3.5.1 Attachment article – Primary and foreign keys:

The entity attachment_article has a combined primary key that consists of the following
attributes:

 Attachment_id – Primary foreign key from entity attachment.
 Article_id – Primary foreign key from entity article.

3.6 Attachment detail

The entity attachment_detail shown in Figure 3-6 contains records of details not common for all
attachments, as well as enables new attributes to be added to an attachment in the future.

Figure 3-6: Attachment detail entity

3.6.1 Attachment detail – Primary and foreign keys:

The entity attachment_detail uses a combined primary key from the following foreign keys:

 Detail_type – Primary foreign key from entity detail_type.
 Attachment_id – Primary foreign key from entity attachment_id.

3.6.2 Attachment detail – Attributes

 Detail_value – Attribute to store a value to each record.

3.7 Attachment revision

The entity attachment_revision shown in Figure 3-7 holds records regarding revision
information for attachments.

 Appendix D

Figure 3-7: Attachment revision entity

3.7.1 Attachment revision – Primary and foreign keys:

 Attachment_revision_id – Primary key attribute for each record.
 Attachment_id – Foreign key from the entity attachment to connect a revision record.

3.7.2 Attachment revision – Attributes

 Revision_number – Revision number for an attachment.

3.8 Attachment revision detail

The entity attachment_revision_detail shown in figure Figure 3-8 holds records of uncommon
details regarding attachment revisions. This enables new attributes to be added in the future.

Figure 3-8: Attachment revision detail entity

3.8.1 Attachment revision detail – Primary and foreign keys:

Attachment revison detail uses a combined primary key from the following foreign keys:

 Detail_type – Primary foreign key from the entity detail_type.
 Attachment_revision_id – Primary foreign key from entity attachment_revision.

3.8.2 Attachment revision detail – attributes

 Detail_value – Attributing holding a value for each record.

 Appendix D

3.9 Attachment type

The entity attachment_type shown in Figure 3-9 contains records describing each type of
attachments.

Figure 3-9: Attachment type entity

3.9.1 Attachment type – Primary and foreign keys:

 Attachment_type – Primary key for the entity. A short type description of various types
of attachments.

3.10 Company

The entity company shown in Figure 3-10 holds records for companies. Records can be either a
customer, vendor or production company.

Figure 3-10: Company entity.

3.10.1 Company – Primary and foreign keys:

 Company_id – Primary key of the entity. Represents a unique id for each company.

3.10.2 Company – attributes

 Iscustomer – An attribute which is either false or true depending if the record is a
customer.

 Isvendor – An attribute which is either false or true depending if the record is a vendor.
 Isproducent – An attribute which is either false or true depending if the record is a

producent.

 Appendix D

 Company_name – The company’s name.
 Tel_no – the company’s phone number.
 Address – The company’s address.
 Postal_code – The company’s postal code.
 Country – which country the company is located in.
 Production_location – where the production is located of a company.

3.11 Component

The entity component shown in Figure 3-11 holds records for each component sold by Scanjet
Ariston AS.

Figure 3-11: Component entity.

3.11.1 Component – Primary and foreign keys:

 Component_id – Primary key to separate each record.
 Article_id – Foreign key from the entity article. Each record can be connected to an

article.
 Component_dependency – Foreign key from component itself. Some products are

delivered as one piece but in practice consists of several registered components.
 Po_number – Foreign key from the entity purchase_order. Each component is

connected to an order.
 Tank_id – Foreign key from the entity tank. Components like sensors are installed in

tanks on a ship.

 Appendix D

3.11.2 Component – attributes

 Serial_no – Attribute for Scanjet’s serial number on components.
 External_serial_no – Attribute for vendors serial number on a component.
 Production_date – the date which the component was produced.
 Vendor_delivery_date – When the component was delivered by a vendor.
 Memo – free text attribute for any additional information.
 Installed_date – The date which the component was installed.
 Scrapped_date – If a component is scrapped it is possible to add a date to a serial

number.
 Scapped_description – Descripting for scrapped components.
 Warranty_expiration_override – If a general warranty is overridden on one

component.

3.12 Component detail

The entity component_detail shown in Figure 3-12 holds records of additional attributes for
records in component which are not common for all records.

Figure 3-12: component detail entity.

3.12.1 Component detail – Primary and foreign keys:

Component_detail uses a combined primary key of the following foreign keys:

 Component_id – foreign key from the entity component.
 Detail_type – Foreign key from the entity detail_type.

3.12.2 Component detail – Attributes

 Detail_value – Attribute holding a value for each detail record.

 Appendix D

3.13 Component error data

The entity component_error_date shown in Figure 3-13 contains records of errors registered on
a component.

Figure 3-13: component error data entity

3.13.1 Component error data – Primary and foreign keys:

 Component_error_data_id – Primary key for the entity. A unique number for each
record.

 Component_id – Foreign key from the entity component connecting an error record to a
component.

3.13.2 Component error data – attributes

 Error_description – Free text attribute for describing the error registered.
 Error_date - Which date the error was registered.
 Action – Attribute describing which action is preformed to handle the error.
 Status – The status of the error. E.g. repaired, discarded etc.

3.14 Contact person

The entity contact_person shown in Figure 3-14 holds records of contact persons for companies.

Figure 3-14: Contact person entity

 Appendix D

3.14.1 Contact person – Primary and foreign keys:

 Contact_person_id – Primary key for the entity. Requires a unique number for each
record.

 Company_id – Foreign key from the entity company. Attribute required to connect a
company to a contact person.

3.14.2 Contact person – attributes

 Contact_person_name – Name of the contact person.
 Phone_no – Landline number of the contact person.
 Email_address – Email address of the contact person.
 Mob_no – Cellphone number of the contact person.
 Active – An attribute that can either be false or true depending if the person is still active

as a contact person.

3.15 Data type

The entity data_type shown in Figure 3-15 holds records of different data types for details.

Figure 3-15: Data type entity.

3.15.1 Data type – Primary and foreign keys:

 Data_type – Primary key of the entity describing which data type the record is.

3.15.2 Data type – attributes

 Cpp_equivalent_data_type – The equivalent data type name in C++ language.
 Array_length_limit – The max length of the data type.

3.16 Detail type

The entity detail_type shown in Figure 3-16 holds records of detail types used for each detail
entities.

Figure 3-16: Detail type entity.

 Appendix D

3.16.1 Detail type – Primary and foreign keys:

 Detail_type – Primary key of the entity. Short descriptive name of a detail type.
 Data_type – Foreign key from the entity data_type descripting which datatype the detail

type is.

3.16.2 Detail type – attributes

 Detail_type_desciption – Free text describing the detail type.

3.17 Project

The entity project shown in Figure 3-17 holds records of each project Scanjet Ariston has done.

Figure 3-17: Project entity.

3.17.1 Project – Primary and foreign keys:

 Project_id – Primary key of the entity. A unique number for each record.
 Production_bom_no – A foreign key from the entity article. Each project has an article

number.

3.17.2 Project – attributes

 Project_no – Internal project number.
 Project_name – Name of the project.
 Shipment_date – When the project was shipped.

 Appendix D

 Delivered_date – When the project was delivered.
 Sensor_warranty – The warranty expiration date of sensor equipment in the project.
 Warranty_expiration – The general warranty expiration for the project.
 Warranty_description – Description of the warranty.
 Memo – Free text for additional information.
 Ship_name – Name of the ship the record is for.
 Ship_imo – IMO number of the ship.
 Shipyard – Which shipyard the ship is being built.
 Hull_number – The ship’s hull number.

3.18 Purchase order

The entity purchase_order shown in Figure 3-18 holds records of each purchase order recived
by Scanjet Ariston.

Figure 3-18: Purchase order entity.

3.18.1 Purchase order – Primary and foreign keys:

 Po_number – Primary key of the entity. Each order has a unique internal PO number.
 Project_id – Foreign key from the entity project. Connecting a purchase order to a

project.
 Production_company_id – Foreign key from the entity company. Which company has

produced the order.
 Customer_company_id – Foreign key from the entity company. It describes which

company is the customer of the order.

3.18.2 Purchase order – attributes

 External_order_no – External order number.
 Recived_date – which date was the order recived.

 Appendix D

 Sm_order – Order number in Scanjet concern’s system.
 General_warranty – The expiration date of the general warranty of a purchase order.

3.19 Sensor category

The entity sensor_category shown in Figure 3-19 contains records of the different sensor
categories used for articles. E.g. pressure, temperature etc.

Figure 3-19: Sensor category entity

3.19.1 Sensor category – Primary and foreign keys:

 Sensor_category – Primary key of the entity. Short descriptive text of the sensor
category. Max length 25 characters.

3.19.2 Sensor category – attributes

 Description – Free text for describing the sensor category.

3.20 Sensor detail

The entity sensor_detail shown in Figure 3-20 holds records of additional sensor specification
details which are not common for sensor articles.

Figure 3-20: Sensor detail entity.

3.20.1 Sensor detail – Primary and foreign keys:

Sensor_detail has a combined primary key of the following foreign keys:

 Sensor_specification_id – Foreign key for the entity sensor_specification.
 Detail_type – Foreign key from the entity detail_type.

3.20.2 Sensor detail – attributes

 Detail_value – Attribute that holds a value for each sensor detail record.

 Appendix D

3.21 Sensor specification

The entity sensor_specification shown in Figure 3-21 holds records for articles of type sensor
which require additional information.

Figure 3-21: Sensor specification entity.

3.21.1 Sensor specification – Primary and foreign keys:

 Sensor_specification_id – Primary key of the entity. A unique identification number for
each record.

 Sensor_category – Foreign key from the entity sensor_category. Describing the category
of each sensor specification record.

3.21.2 Sensor specification – attributes

 Accuracy – The accuracy of a sensor article.
 Model – model description of a sensor article.
 House_material – Which material the housing of a sensor article is made of.
 Process_material – Which material the process equipment of a sensor article is made of.
 Max_prcoess_pressure – Maximum process pressure the sensor article is made for.
 Process_conection – which connection the sensor article has to the process.

 Appendix D

 Electrical_connection – which type of electrical connection the sensor article has.
 Supply_voltage – which supply voltage the sensor article is rated for.
 Max_process_temp – maximum process temperature the sensor article is rated for.
 Min_process_temp – minimum process temperature the sensor article is rated for.
 Max_ambient_temp – Maximum ambient temperature the sensor article is rated for.
 Min_ambient_temp - Minimum ambient temperature the sensor article is rated for.
 Ip_grade – The IP grade classification of the sensor article.
 Output_signal – which output signal the sensor article is rated for.
 Nom_low – which is the nominal low limit the sensor article is rated for.
 Nom_high - which the nominal high limit the sensor article is rated for.
 Span_low – Which zero point the sensor article is rated for.
 Span_high – Which range the sensor article is rated for.

3.22 Tank

The entity tank shown in Figure 3-22 contains records with information for each tank
components has been installed in.

Figure 3-22: Tank entity.

3.22.1 Tank – Primary and foreign keys:

 Tank_id – Primary key of the entity. A unique number identifying each tank record.
 Tank_type – Foreign key from the entity tank_type. A type description of the tank. E.g.

cargo, ballast.
 Project_id – Foreign key for the entity project. Connecting tank records to projects.

3.22.2 Tank – attributes

 Tank_name – Name of the tank.
 Height – the height of the tank.
 Memo – free text for additional information.

 Appendix D

3.23 Tank type

The entity tank_type shown in Figure 3-23 contains records describing each tank type.

Figure 3-23: tank_type entity.

3.23.1 Tank type – Primary and foreign keys:

 Tank_type – Primary key of the entity. Short descriptive text regarding the tank type.
 Decription – free text for descripting the tank type.

 Appendix D

4 Relationships
4.1 Article – project

Each record in the entity project can be connected to one record in article. The relationship is
shown in Figure 4-1. In practice a project is allocated an article number.

Figure 4-1: Article - project relationship

4.2 Article type – article

Each record in the entity article_type can be connected to one or many articles. The relationship
is shown in Figure 4-2.

 Appendix D

Figure 4-2: article type - article relationship

4.3 Article – article

Each record in article can be connected to one other record in article shown in Figure 4-3. An
article may become obsolete and replace by a new article record. A connecting is designed to be
able to trace such replacements.

Figure 4-3: Article - Article relationship

 Appendix D

4.4 Article – article detail

Each record in the entity article can be connected to one or many records in article_detail shown
in Figure 4-4. The relationship is identifying because the foreign key article_id is part of
article_detail’s primary key.

Figure 4-4: Article - article detail relationship

4.5 Article – attachment article – attachment

The relationship between the entities article, attachment_article and attachment are shown in
Figure 4-5. The relationship between entities article and attachment is defined as a many-to-
many relations. To accomplish this, a connecting entity attachment_article is designed. As a
result, each record in article can be connected to many records in attachment and the opposite.

 Appendix D

Figure 4-5: Article - attachment relationship

4.6 Article – component

The relationship between the entities article and component is shown in Figure 4-6. Each record
in article can be connected to one or many components.

Figure 4-6: Article - component relationship

 Appendix D

4.7 Attachment revision – attachment revision detail

The relationship between the entities attachment_revision and attachment_revision_detail is
shown in Figure 4-7. Each record in attachment_revision can be connected to one or many
revision details by a one-to-many relationship. The relationship is identifying because the foreign
key from attachment_revision is part of attachment_revision_detail’s primary key.

Figure 4-7: Attachment revision - attachment revision detail relationship

4.8 Attachment type – attachment

The relationship between the entity attachment_type and attachment are shown in Figure 4-8.
Each record in attachment_type can be connected to one or many records in attachment.

Figure 4-8: attachment type - attachment relationship

 Appendix D

4.9 Attachment – attachment detail

The relationship between the entity attachment and attachment_detail is shown in Figure 4-9.
Each record in attachment can be connected to one or many attachment_details. The relationship
is identifying because the foreign key attachment_id is part of the primary key of
attachment_detail.

Figure 4-9: Attachment - attachment detail relationships

4.10 Attachment – attachment revision

The relationship between the entity attachment and attachment_revison is shown in Figure 4-10.
Each record in attachment can be connected to one or many records in attachment_revision.

 Appendix D

Figure 4-10: Attachment - attachment revision relationship

4.11 Company – article

The relationship between the entities company and article is shown in Figure 4-11. Each
company can be connected to one more record in article. An article can only be connected to one
company. Each article has one vendor.

Figure 4-11: Company - article relationship

 Appendix D

4.12 Company – attachment

The relationship between company and attachment is shown in Figure 4-12. Each company can
be connected to one or more records in attachment. An attachment record can only be connected
to one company.

Figure 4-12: Company - attachment relationship

4.13 Company – contact person

The relationship between company and contact_person is shown in Figure 4-13. Each record in
company can have one or many records in contact_person, but a contact person can only be
connected to one company.

Figure 4-13: Company - contact person relationship

 Appendix D

4.14 Company – purchase order 1 and 2

The relationships between company and purchase_order is shown in Figure 4-14. The reason
behind two one-to-many relationships between company and purchase order is that one single
record in purchase_order is connected to two companies, a production company and a customer
company.

Figure 4-14: Company - Purchase order relationships

4.15 Component – component

The entity component has a one-to-many relationship with itself shown in Figure 4-15. A
component can be part of complete product. The relationship is designed to ensure a connection
between several components in a product. E.g. radar and radar electronics both have their own

 Appendix D

serial numbers but are sold as a complete product.

Figure 4-15: Component - component relationship

4.16 Component – component detail

The relationship between the entity component and component_detail is shown in Figure 4-16.
Each record in component can have one or many component details. The relationship is
identifying because the foreign key component_id is part of component_detail’s primary key.

Figure 4-16: component - component detail relationship

 Appendix D

4.17 Component – component error data

The relationship between component and component_error_data is shown in Figure 4-17. Each
component record can have one or many connected records in component_error_data. A record
in component error data can only be connected to one record in component.

Figure 4-17: component - component error data relationships

4.18 Data type – detail type

The relationship between data_type and detail_type is shown in Figure 4-18. Each record in data
type can be connected to one or many records in detail type.

Figure 4-18: Data type - detail type relationship

 Appendix D

4.19 Detail type – article detail

The relationship between detail_type and article_detail is shown in Figure 4-19. Each record in
detail type can be connected to one or many records in article detail. The relationship is
identifying because the foreign key detail_type is part of article_detail’s primary key.

Figure 4-19: Detail type - article detail relationship

4.20 Detail type – attachment detail

The relationship between detail_type and attachment_detail is shown in Figure 4-20Figure 4-19.
Each record in detail type can be connected to one or many records in attachment_detail. The
relationship is identifying because the foreign key detail_type is part of attachment_detail’s
primary key.

Figure 4-20: Detail type - attachment detail relationship

 Appendix D

4.21 Detail type – attachment revision detail

The relationship between detail_type and attachment_revision_detail is shown in Figure 4-21.
Each record in detail type can be connected to one or many records in
attachment_revision_detail. The relationship is identifying because the foreign key detail_type is
part of attachment_revision_detail’s primary key.

Figure 4-21: Detail type - attachment revision detail relationship

4.22 Detail type – component detail

The relationship between detail_type and component_detail is shown in Figure 4-22. Each record
in detail type can be connected to one or many records in component_detail. The relationship is
identifying because the foreign key detail_type is part of component_detail’s primary key.

 Appendix D

Figure 4-22: Detail type - component relationship

4.23 Detail type – sensor detail

The relationship between detail_type and sensor_detail is shown in Figure 4-23. Each record in
detail type can be connected to one or many records in sensor_detail. The relationship is
identifying because the foreign key detail_type is part of sensor_detail’s primary key.

Figure 4-23: detail type – sensor detail relationship

4.24 Project – purchase order

 Appendix D

4.25 Project – tank

The relationship between project and tank is shown in Figure 4-24. Each record in project can be
connected to one or more records in tank. A tank can only be connected to one project.

Figure 4-24: Project - tank relationship

4.26 Purchase order – component

The relationship between the entity purchase_order and component are shown in Figure 4-25.
Each record in purchase_order can be connected to one or more records in components. A
component can only be connected to one record in purchase_order.

 Appendix D

Figure 4-25: Purchase order - component relationship

4.27 Sensor category – sensor specification

The relationship between sensor_category and sensor_specification is shown in Figure 4-26. A
record in sensor category can be connected to one or more records in sensor specification. Each
record in sensor specification can only be connected to one sensor category.

Figure 4-26: Sensor category - sensor specification relationship

 Appendix D

4.28 Sensor specification – sensor detail

The relationship between sensor_specification and sensor_detail is shown in Figure 4-27. Each
record in sensor specification can be connected to one or more records in sensor details. The
relationship is identifying because of the foreign key sensor_specification_id being part of
sensor_detail’s primary key.

Figure 4-27: Sensor specification - sensor detail relationship

4.29 Tank type – tank

The relationship between tank_type and tank are shown in Figure 4-28. Each record in tank type
can be connected to one or many records in tank. A single record in tank can only be connected
to one tank type.

Figure 4-28: Tank type - tank relationships

 Appendix D

4.30 Tank – component

The relationships between tank and component is shown in Figure 4-29. Each record in tank can
be connected to one or many components. A single record in component can only be connected
to one record in tank. This design is done because several components can be installed in a tank.

Figure 4-29: tank - component relationship

Appendix E

Table attachment detail component detail Old names if changed

Revision Address Adresse

Highrange

Dallas Id

Calibration mA Set of Sen:Fro 0, Sen:Fro 40, Sen:Fro 60, Sen:Fro 100

Lowrange

Production Batch Prod Batch

COP8 Revision

Gain

Gal 2 Revision

Gal Revision

Nl1

Nl2

Null

P906 Calibration mA Set of Sen:Fro 0, Sen:Fro 0 G1, Sen:Fro 0 G2, Sen:Fro 0 G3, Sen:Fro 40, Sen:Fro 40 G1, Sen:Fro 40 G2, Sen:Fro 40 G3, Sen:Fro 60, Sen:Fro 60 G1, Sen:Fro 60 G2,Sen:Fro 60 G3, Sen:Fro 100, Sen:Fro 100 G1, Sen:Fro 100 G2, Sen:Fro 100 G3

P906 Calibration1 mV Set of Sen:Temp1,Sen:Temp Ohm 1, Sen:Fro1 0, Sen:Fro1 10, Sen:Fro1 20, Sen:Fro1 30, Sen:Fro1 40, Sen:Fro1 50, Sen:Fro1 60, Sen:Fro1 70, Sen:Fro1 80, Sen:Fro1 90, Sen:Fro1 100

P906 Calibration2 mV Set of Sen:Temp2,Sen:Temp Ohm 2, Sen:Fro2 0, Sen:Fro2 10, Sen:Fro2 20, Sen:Fro2 30, Sen:Fro2 40, Sen:Fro2 50, Sen:Fro2 60, Sen:Fro2 70, Sen:Fro2 80, Sen:Fro2 90, Sen:Fro2 100

P906 Calibration3 mV Set of Sen:Temp3,Sen:Temp Ohm 3, Sen:Fro3 0, Sen:Fro3 10, Sen:Fro3 20, Sen:Fro3 30, Sen:Fro3 40, Sen:Fro3 50, Sen:Fro3 60, Sen:Fro3 70, Sen:Fro3 80, Sen:Fro3 90, Sen:Fro3 100

P906 Calibration4 mV Set of Sen:Temp4,Sen:Temp Ohm 4, Sen:Fro4 0, Sen:Fro4 10, Sen:Fro4 20, Sen:Fro4 30, Sen:Fro4 40, Sen:Fro4 50, Sen:Fro4 60, Sen:Fro4 70, Sen:Fro4 80, Sen:Fro4 90, Sen:Fro4 100

Power 24V

Power 5V

Revision Revisjon

Position Inclinometernummer, Tank:LGP, Tank: bottom, Tank: Mid, Tank:Top

Single

Software version

Tag number

Tss

Tzs

Used

Display

BIOS Revision

Cable length Kabellengde

Mariner Approved

Network card

Connection protocol

Connector

CPU

Housing

Length High Length 1

Length Overflow Length 2

Flash memory

HDD

Welded

Ex NIS

Ram

Type

Cabling

Appendix F
What column separates? If two, first column value Article No= Column value Article No= Column value Article No= Column value Comment

Table
ABU A5002
AWS A5003
INANDATA A5006
Inclinom C1364 Ship uses ABU C1536 Ship uses TCU
LIDEC Single A5021 Single A5022 double
LIDEC(HLOA) Type C2105 API TLA C2679 API UTS Typo API TPA rectify to API TLA
LIDEC(HLOA) Type, Single ASL400 C1652 Double C1747 Single Empty=double, "information missing, double/single) I memo
LIDEC(HLOA) Type, Single LSG C2048 Double C2053 Single Empty=double, "information missing, double/single) I memo
LIDEC(HLOA) Type C2602 Vegaswing63 o.l. Rename all to Vegaswing 63
LIDEC(HLOA) Type C2218 Vegacap62
LIDEC(HLOA) Type C2452 Vegacap64
LIDEC Type M1311B Insert as detail, Typo MB1311B rectify to M1311B
LIDEC type C1581 L92C-HT C1581 L92C-BPR
Monitord type Insert as detail
PC386DAT A5011
PCVGADAt C1445
SGCNVDAT serienummer A5023 <256 a5036 256 A5037 257
TCU A5026
TDU Revisjon A5025 <5 A5041 5
TPC140 A5012
TPC196 Software version A5013 1 A5040 2
TPC350 A5000
Watering Kabelengde C1532 20 C1531 5 C1560 30
ZB4R5 Nis A5027 0 A5031 1
ZB485DAT A5007
ZBANADAT A5008
ZBANAIIB A5009
ZBAR5 Nis A5028 0 A5032 1
ZBAR6 A5035
ZBAR7 NIs A5038 0 A5039 1
RS485DAT A5005

Appendix G

1 Data migration guide
This guide will describe how to execute the data migration from Clarion to PostgreSQL. It
uses SoftVelocity Database Scanner(SVDS), Excel, Devart for Excel and a executable file.
An excel file (Transformation.xlsx) is also included which will be used for most of the
migration. It’s recommended to dedicate a computer for this as there will be numerous hours
of waiting.

The general approach to this migration can be seen in Figure 1-1.

Figure 1-1 General approach to migration

Innhold
1 .. Data migration ... 1

1.1 Export data from Clarion .. 2
1.1.1 Hidden fields .. 2
1.1.2 Corrupt data ... 2
1.1.3 Export data ... 4

1.2 Importing to Excel ... 7
1.3 Transformation of data ... 8

1.3.1 Predefined data and connecting to the database from Excel 9
1.3.2 Using the Transformation Excel book .. 13
1.3.3 Finally, almost ... 17
1.3.4 Prosjekt-shipdata_project .. 18
1.3.5 Sensordata_details ... 18
1.3.6 Tank .. 19
1.3.7 Feildata_component-error-data ... 19

Appendix G

1.1 Export data from Clarion
Before exporting data, some modifications are required.

1.1.1 Hidden fields

Some fields are hidden as shown in Figure 1-2.

Figure 1-2 Hidden field at the end

To resolve this, double click on the Hidden field column. A window will pop up.

Figure 1-3 Fields of the table

Figure 1-3 shows a hidden field DIVERSE in table ABU. Number of fields hidden may differ
from table to table.

In each table one should check for hidden fields!

1.1.2 Corrupt data

1.1.2.1 Misplaced data

It is recommended to keep data in columns as DIVERSE, although in some tables they may
create trouble as it is uses multiline and will corrupt data integrity as can be seen in Shipdata
table regarding Eksternt Utstyr. Figure 1-4 shows the column rec no in table Shipdata, it has
misplaced data from column eksternt utstyr due to formatting faults. To resolve the issue, it is
recommended to skip this column, another solution is to manually move this data to the
correct column. SVDS(SoftVelocity Database Scanner) has been searched for solutions to
this without luck.

Appendix G

Figure 1-4 Misplaced data in Shipdata

Additional places this has happened

 Feildata (Line 124)
 ABU(Line 172)

There may be more of this hidden in the data. This can only be checked during a full-scale
test, which has not been done. New entries may contain this fault as well, which in that case,
testing now wouldn’t help. If encountered, values must either manually be rectified, or
columns be hidden before exporting the data from the Clarion database. Choosing the latter
will obviously mean data is lost.

1.1.2.2 Wrongly formatted data

DallasID is typically not readable in all records as can be seen in Figure 1-5. This also
applies to some columns in Sensordata.

Figure 1-5 Dallas ID not in readable format

This case applies to the following tables.

 Sensordata
 SGCNVDAT
 TPC140
 TPC196
 TPC350

To fix this issue, click in the column which has wrong format(1), then click column in the
menu(2) and then format(3). See Figure 1-6 for visual instructions.

There are also occasions of numbers not being formatted correctly in Sensordata, there are
occurances in several calibration data columns. As there are too many entries and columns to
manually check, it’s recommended to change all columns regarding calibration in addition to
DallasID. There appears no obvious way to do this to more than one column at a time.

Appendix G

Figure 1-6 Finding the format window

Figure 1-7 shows the window that appears when last instruction is executed. Change Data
format: Picture: @N-11.2 to @N-12 for DallasId, @N-5 to @N-10 for calibration data.

Figure 1-7 Format column window

1.1.3 Export data

When the preceding tasks have been finished, the exportation may start.

Following are instructions with pictures to visualize:

Appendix G

Figure 1-8 File->Export

Appendix G

Figure 1-9 Choose where to export the file by clicking (…) and click Ok

Appendix G

1.2 Importing to Excel
It is recommended to change priority of Excel.exe in task manager(CTRL+Shift+ESC)-
>details->Right click on excel.exe-> set priority to high to increase resources to excel.

To import the files from Clarion, go to Data(1) then to Fra tekst/CSV(From text/CSV)(2). See
Figure 1-10

Figure 1-10 Importing from text

A new window appears, change file type from Text files(tekstfiler) to All files(Alle filer) as
seen in the lower right corner of Figure 1-11.

Figure 1-11 Choosing the file to import

This should be imported into a blank excel file. When a file has been chosen, a new window
appears as in Figure 1-12. Click Load(Last inn) and data should appear in your worksheet. It
is recommended to import all files before continuing to chapter 1.3.

Appendix G

Figure 1-12 Loading data

Your excel sheet should look something like Figure 1-13

Figure 1-13 Clarion data in Excel

Feil I feildata linje 5

It’s recommended to import all data to the blank Excel file first, before proceeding.

1.3 Transformation of data
Each table in the old database may be a part of several tables in the new database, therefore a
Clarion table will have many sheets in 03 Transformation.xlsx. In the Excel book, the sheets

Appendix G

will have the name type Old Table, Old table_To Python , Old Table_New Table,
OldTable_details, Old table help or New table help.

1.3.1 Predefined data and connecting to the database from Excel

The data should be transferred in a certain order. This is shown in Figure 1-14. The first row,
numbered 1 and additionally detail_type(2), sensor_specification(2) and article, are found in
01 Predefined data.xlsx and should be uploaded to the database first. As Figure 1-14
suggests, detail_type and sensor_specification must be uploaded after data_type and
sensor_category respectively. Lastly article must be uploaded. The other tables will be
explained in due turn.

Figure 1-14 Order of data migration

To upload the first data, open the Excel files 01 Predefined data.xlsx (visual in Figure 1-15)
and 04 Insert sheet.xlsx (visual in Figure 1-16).

Appendix G

Figure 1-15 01 Predefined data

Appendix G

Figure 1-16 04 Insert book.xlsx

In 04 Insert Sheet.xlsx connect to the database by clicking Edit mode in the top menu (marked
blue in following figure).

If a new database is created before migration is executed, the insert sheets must be recreated
as they’re connected to the current version. If this is not the case, skip the two next figures
and related text.

You must then create a new connection to the new database by clicking Get data to the left of
Edit mode. You will be prompted with a new window as shown in Figure 1-17. Give the host
address, port, user id, password and database name. When entered, check the box Allow reuse
connection in Excel and give a name to the connection (marked red in figure). The connection
can now be used again by choosing a Data source (marked with black). Click next.

Appendix G

Figure 1-17 First step: connect to database

Choose a desired table, which in this case must be repeated for all tables in the database.
When a table is chosen, click Finish. Devart will download the format of the chosen table.
Now choose Edit mode again.

Figure 1-18 Second step: choose a table

Appendix G

Now that Edit has loaded and connected to the database, copy the data (not column names)
from 01 Predefined data.xlsx into the corresponding sheet in 04 Insert book.xlsx. When the
data is loaded into the insert sheet. Click Commit as shown in Figure 1-19.

Figure 1-19 Data inserted to 04 Insert book.xlsx

Complete all tables in 01 Predefined data before moving on. Note that large amounts of data
may use considerable amount of time to load. It’s recommended to move primary keys alone
as it appears creating new entries takes a lot of time compared to adding data to an existing
record. Say about 1000 integer PK will likely take 15-20min to insert into the sheet, and some
time after committing as well.

01 Predefined data.xlsx may now be closed.

1.3.2 Using the Transformation Excel book

Transformation.xlsx contains over 100 sheets formed as both databases and interfaces between
them. This guide will tell where to start and how to navigate to execute the migration.

All data exported from Clarion should now be copied into 03 Transformation.xlsx in
appropriate sheets. E.g. TDU from clarion goes to the TDU sheet in 03 Transformation.xlsx.
To easily find the correct sheets see Figure 1-20. When all Clarion database data is copied
into the workbook, a good place to start is by once again look at Figure 1-21.

Appendix G

Figure 1-20 Easy navigation in Excel by right clicking at the red dot and choosing desired
table

Figure 1-21 Order of data migration

Appendix G

Now that all the tables marked with (1), detail_type and sensor_specification is finished, tables
marked with (2) should be attended. There exists no contant_person or attachment revision
data, so these tables can be excluded. This leaves Attachment the obvious choice.

1.3.2.1 Attachment and the general way to use most sheets in
Transformation.xlsx

To migrate the content of this table, be sure to click the Edit mode in 04 Insert book.xlsx at
the attachment sheet. Open 03 Transformation.xlsx and navigate to Tegning_attachment,
once again, it’s recommended not to copy big chunks of data, experiment with how many
primary keys you want to insert at a given time, 1000 is likely a good start and should take
15-20minutes. When copying this data and all further data, it’s important to paste as values
as these values are derived with Excel formulas.

Make sure to scroll to the bottom of every sheet and look for values as shown in Figure 1-22.
If this is not found, there are likely more entries which is not yet found. In this case, mark the
last row which has values and copy the formulas by clicking and holder the lower right corner
and dragging downward. The formulas will lookup in the Clarion database sheet and find
additional entries. If the hashtag values are found, these rows should not be copied.

Figure 1-22 End of values from Clarion

When all primary keys are inserted and Commited, the rest of the data can be copied. Again,
experiment with what number of cells you copy at a time, Devart for Excel does not need to
create new entries now and can handle more data.

This approach can be used for all tables which are not detail tables. Still Figure 1-21 applies,
the next step is to upload data from any table marked with (3) as all marked with (1) and (2)
are finished.

1.3.2.2 Attachment_detail

As attachments are now uploaded, this is a good time to explain the attachment_details and
thus all other detail tables. In 03 Transformation.xlsx, attachments and components have two
additional sheets, generally called old table_detailsToPython and old table_new table-details.
In the case of attachment, they’re called Tegning_detailToPython and Tegning_attachment-
details.

Here as Figure 1-1 indicated, it’s needed to use a Python script to restructure the data.

There should now be updated data in Tegning_detailsToPython, again it’s needed to check
that all entries are present, as described in the second section of chapter 1.3.2.1.

When all entries are accounted for, the data, including column names, should be copied to
01_To_transformation.xlsx. Figure 1-23 shows how this should look like. Note that the cell
marked with “Keep this” is protected and must not be deleted. This Excel book and
02_Finished must not be moved as an .exe file will use them.

For the next step, note how many IDs and how many detail columns that are copied. In this
case I have 1058 IDs and one detail column. The book should then be saved and closed.

Appendix G

Figure 1-23 Attachment details copied to 01_To_transformation

Now that 01_To_transformation is saved and closed, run Migration.exe. In Figure 1-24 the
noted numbers from last section is entered.

Figure 1-24 Migration.exe

Pressing enter again will run the script, progressively showing how far it has come in terms
of 0-100%. If the program should crash, this is likely because too many components or
details are entered. The program will then exit, when the program succeeds it will halt and
wait for the user to press enter as shown in Figure 1-25.

Figure 1-25 Migration.exe has successfully completed

Migration.exe has now updated 02_Finished.xlsx, the product is shown in Figure 1-26. The
data, without the column names can now be copied to either: 04 Insert book.xlsx and be

Appendix G

uploaded to the database, or to 03 Transformation.xlsx in the Tegning_attachment-details
sheet. The latter is not needed but may be preferable if you want to complete all
transformations before uploading. If not, do as always, be sure to click the Edit mode button
before pasting, and preferably paste and commit IDs before the rest of the data.

Figure 1-26 Details transformed to PostgreSQL format

1.3.3 Finally, almost

The procedures are from now on repeated for all tables with some lesser modifications on
tables mentioned in the next subchapters.

Follow the instructions of Figure 1-27. Tables which are not a detail table uses the same
approach as chapter 1.3.2.1. Detail tables follow the approach of 1.3.2.2. When it comes to
component and component_detail there are many sets of these tables. Start from the left in 03
Transformation.xlsx, remember to check primary keys as explained in chapter 1.3.2.
Additionally, remember for each sheet in 04 Insert book.xlsx click Edit mode. This function
often disconnects so check each time you want to upload something.

Appendix G

Figure 1-27 Order of data migration

1.3.4 Prosjekt-shipdata_project

Some Prosjektnummer from the Clarion database are empty, these will create issues in the
table purchase order as purchase order’s primary key will have the prefix “PO:” with
project_number as variable. For now Q00000x is used and must be placed manually.

Prosjektnummer entries aren’t unique and will cause trouble in this case as well, either they
can be removed by marking and clicking Data->Remove Duplicates in Excel (two are found),
or they may be searched for and given new values.

1.3.5 Sensordata_details

These sheets are named somewhat differently than other detail tables. This is because
differing sensors have variable amount of detail columns. These have been split such that
each type has their own sheet. These sheets are now called:

 P906_details to python
 P986_details to python
 ATM_details to python
 VEGA_details to python
 P1728_details to python
 P_details to python
 PTM_details to python
 PULS_details to python
 SPT_details to python

Note that sensordata_details_help should not be used during migration.

Appendix G

1.3.6 Tank

Tank names have been added as a detail of some components, this is due to late validation of
how to store it. It is redundant data, but there is not time to rectify this. Scanjet may remove
these

1.3.7 Feildata_component-error-data

This is one of the last tables to be uploaded and uses data which has been uploaded
beforehand. To execute this, use Devart for Excel to download the new component table from
the server. Insert the values into component-erorr-data_help in 03 Transformation.xlsx.

From here on, use the Excel Insert book to upload the data to component_error_data as
usual.

 Appendix J

<!DOCTYPE shipdata> [

<!ELEMENT config (gui, database)>

<!ELEMENT gui (datafields)>

<!ELEMENT controls (control*)>

<!LEMENT control EMPTY>
<!ATTLIST control
name CDATA #REQUIRED>

<!ELEMENT datafields (datafield*)>

<!ELEMENT datafield EMPTY>
<!ATTLIST datafield
name CDATA #REQUIRED
width CDATA #REQUIRED
height CDATA #REQUIRED
control CDATA #REQUIRED
readonly (true|false) #REQUIRED>

<!ELEMENT database (tables,relationships,data_types,detail_types,views)>
<!ATTLIST database
name CDATA #REQUIRED
version CDATA #REQUIRED>

<!ELEMENT tables (table*)>

<!ELEMENT table (accesslevel, column+)>
<!ATTLIST table
name ID #REQUIRED
alias CDATA #REQUIRED>

<!ELEMENT column (accesslevel, foreignkey?)>
<!ATTLIST column
name CDATA #REQUIRED
alias CDATA #REQUIRED
datatype (text|integer|real|bool|date|timestamp) #REQUIRED
datalength CDATA "0"
isprimarykey (true|false) "false"
readonly (true|false) "false">

<!ELEMENT accesslevel EMPTY>
<!ATTLIST accesslevel
level (0|1|2|3|4|5|6|7|8|9) "5"
exceptions CDATA #IMPLIED>

<!ELEMENT relationships (relationship*)>

<!ELEMENT relationship (parent+, child+)>
<!ATTLIST relationship
name CDATA #REQUIRED
cardinality (1|N) #REQUIRED

 Appendix J

mandatory (true|false) #REQUIRED>

<!ELEMENT parent EMPTY>
<!ATTLIST parent
tablename CDATA #REQUIRED
columnname CDATA #REQUIRED>

<!ELEMENT child EMPTY>
<!ATTLIST child
tablename CDATA #REQUIRED
columnname CDATA #REQUIRED>

<!ELEMENT data_types (data_type*)>
<!ATTLIST data_types
tablename CDATA #REQUIRED
data_type_column CDATA #REQUIRED
array_length_column CDATA #REQUIRED>

<!ELEMENT data_type (gui_representation?)
<!ATTLIST data_type
name CDATA #REQUIRED
cpp_equivalent_data_type CDATA #REQUIRED
array_length_limit CDATA #REQUIRED
array_delimiter (,|.|-|/) #IMPLIED>

<!ELEMENT gui_representation EMPTY>
<!ATTLIST gui_representation
name CDATA #REQUIRED>

<!ELEMENT detail_types (detail_type*)>
<!ATTLIST detail_types
tablename CDATA #REQUIRED
detail_type_column CDATA #REQUIRED
data_type_relationship_name CDATA #REQUIRED>

<!ELEMENT data_type EMPTY>
<!ATTLIST data_type
name CDATA #REQUIRED
data_type_name CDATA #REQUIRED
unit CDATA #REQUIRED
description CDATA #REQUIRED>

<!ELEMENT view (accesslevel, viewtable)>
<!ATTLIST view
name CDATA #REQUIRED
alias CDATA #REQUIRED>

<!ELEMENT viewtable (viewcolumns, detailtable?, viewrelationships?)>
<!ATTLIST viewtable
tablename CDATA #IMPLIED>

<!ELEMENT viewcolumns (viewcolumn*)>
<!ATTLIST viewcolumns
auto (true|false) "true">

 Appendix J

<!ELEMENT viewcolumn EMPTY>
<!ATTLIST viewcolumn
columnname CDATA #REQUIRED>

<!ELEMENT detailtable (detail+)>
<!ATTLIST detailtable
tablename CDATA #REQUIRED
detailcolumnname CDATA "detail_type"
valuecolumnname CDATA #REQUIRED>

<!ELEMENT detail EMPTY>
<!ATTLIST detail
property CDATA #REQUIRED>

<!ELEMENT viewrelationships (viewrelationship+)>

<!ELEMENT viewrelationship (viewtable, constantprimarykey?)>
<!ATTLIST viewrelationship
relationshipname CDATA #REQUIRED
constant (true|false) "true">

<!ELEMENT constantprimarykey (constantcolumn+)>

<!ELEMENT constantcolumn EMPTY>
<!ATTLIST constantcolumn
columnname CDATA #REQUIRED
columnvalue CDATA #REQUIRED>

]>

Other definitions:

<viewtable> @tablename: Only required for the first(most shallow)
occurence. Nested viewtable[s] already have this information through
<relationship>
<relationship>: <parent> and <child> elements must be ordered as follows:
parent1, parent2, parent3, child1, child2, child3

 Appendix J

